Multivariate Approaches Boosting Lithium-Mediated Ammonia Electrosynthesis in Different Electrolytes
Anna Mangini
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Conceptualization (equal), Data curation (lead), Investigation (lead), Methodology (equal), Writing - original draft (lead)
Search for more papers by this authorJon Bjarke Valbæk Mygind
Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby, 2800 Denmark
Contribution: Conceptualization (lead), Data curation (supporting), Formal analysis (supporting), Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Sara Garcia Ballesteros
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Methodology (equal), Project administration (supporting), Supervision (equal), Validation (equal), Writing - original draft (equal)
Search for more papers by this authorAlessandro Pedico
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce, 91, 10135 Torino, Italy
Contribution: Data curation (supporting), Formal analysis (supporting), Methodology (supporting)
Search for more papers by this authorMarco Armandi
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Data curation (supporting), Investigation (supporting), Supervision (supporting), Writing - review & editing (equal)
Search for more papers by this authorIb Chorkendorff
Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby, 2800 Denmark
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Federico Bella
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAnna Mangini
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Conceptualization (equal), Data curation (lead), Investigation (lead), Methodology (equal), Writing - original draft (lead)
Search for more papers by this authorJon Bjarke Valbæk Mygind
Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby, 2800 Denmark
Contribution: Conceptualization (lead), Data curation (supporting), Formal analysis (supporting), Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Sara Garcia Ballesteros
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Methodology (equal), Project administration (supporting), Supervision (equal), Validation (equal), Writing - original draft (equal)
Search for more papers by this authorAlessandro Pedico
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce, 91, 10135 Torino, Italy
Contribution: Data curation (supporting), Formal analysis (supporting), Methodology (supporting)
Search for more papers by this authorMarco Armandi
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Data curation (supporting), Investigation (supporting), Supervision (supporting), Writing - review & editing (equal)
Search for more papers by this authorIb Chorkendorff
Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby, 2800 Denmark
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Federico Bella
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129 Italy
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Ammonia electrosynthesis through the lithium-mediated approach has recently reached promising results towards high activity and selectivity in aprotic media, reaching high Faradaic efficiency (FE) values and NH3 production rates. To fasten the comprehension and optimization of the complex lithium-mediated nitrogen reduction system, for the first time a multivariate approach is proposed as a powerful tool to reduce the number of experiments in comparison with the classical one-factor-at-a-time approach. Doehlert design and surface response methodology are employed to optimize the electrolyte composition for a batch autoclaved cell. The method is validated with the common LiBF4 salt, and the correlations between the FE and the amount of lithium salt and ethanol as proton donor are elucidated, also discussing their impact on the solid electrolyte interphase (SEI) layer. Moreover, a new fluorinated salt is proposed (i.e., lithium difluoro(oxalate) borate (LiFOB)), taking inspiration from lithium batteries. This salt is chosen to tailor the SEI layer, with the aim of obtaining a bifunctional interfacial layer, both stable and permeable to N2, the latter being an essential characteristic for batch systems. The SEI layer composition is confirmed strategic and its tailoring with LiFOB boosts FE values.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202416027-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. B. Bertagni, R. H. Socolow, J. M. P. Martirez, E. A. Carter, C. Greig, Y. Ju, T. Lieuwen, M. E. Mueller, S. Sundaresan, R. Wang, M. A. Zondlo, A. Porporato, PNAS 2023, 120, e2311728120.
- 2N. S. Morlanés, S. P. Katikaneni, S. N. Paglieri, A. Harale, B. Solami, M. Sarathy, J. Gascon, Chem. Eng. J. 2021, 408, 127310.
- 3A. Kumar, V. Vibhu, J. M. Bassat, L. Nohl, L. G. J. de Haart, M. Bouvet, R. A. Eichel, ChemElectroChem 2024, 11, e202300845.
- 4C. Smith, A. K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 2020, 13, 331–344.
- 5Q. Yang, Y. Bu, S. Pu, L. Chu, W. Huang, X. Zhu, C. Liu, G. Fang, P. Cui, D. Zhou, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202400428.
- 6Y. Li, Z. Wang, H. Ji, M. Wang, T. Qian, C. Yan, J. Lu, Angew. Chem. Int. Ed. 2024, 63, e202311413.
- 7J. M. McEnaney, A. R. Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo, J. K. Nørskov, Energy Environ. Sci. 2017, 10, 1621–1630.
- 8J. Kibsgaard, J. K. Nørskov, I. Chorkendorff, ACS Energy Lett. 2019, 4, 2986–2988.
- 9A. R. Singh, B. A. Rohr, M. J. Statt, J. A. Schwalbe, M. Cargnello, J. K. Nørskov, ACS Catal. 2019, 9, 8316–8324.
- 10S. Z. Andersen, V. Čolić, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M. McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr, M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M. Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Nørskov, I. Chorkendorff, Nature 2019, 570, 504–508.
- 11ARPA−E, 2016, https://arpa-e.energy.gov/sites/default/files/docu. Accessed December 2024.
- 12N. Lazouski, Z. J. Schiffer, K. Williams, K. Manthiram, Joule 2019, 3, 1127–1139.
- 13S. Z. Andersen, M. J. Statt, V. J. Bukas, S. G. Shapel, J. B. Pedersen, K. Krempl, M. Saccoccio, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. Nørskov, I. Chorkendorff, Energy Environ. Sci. 2020, 13, 4291–4300.
- 14X. Fu, Mater. Today Catal. 2023, 3, 100031.
10.1016/j.mtcata.2023.100031 Google Scholar
- 15X. Fu, J. B. Pedersen, Y. Zhou, M. Saccoccio, S. Li, R. Sažinas, K. Li, S. Z. Andersen, A. Xu, N. H. Deissler, J. B. V. Mygind, C. Wei, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Science. 2023, 379, 707–712.
- 16N. Lazouski, A. Limaye, A. Bose, M. L. Gala, K. Manthiram, D. S. Mallapragada, ACS Energy Lett. 2022, 7, 2627–2633.
- 17S. Li, Y. Zhou, X. Fu, J. B. Pedersen, M. Saccoccio, S. Z. Andersen, K. Enemark-Rasmussen, P. J. Kempen, C. D. Damsgaard, A. Xu, R. Sažinas, J. B. V. Mygind, N. H. Deissler, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Nature 2024, 629, 92–97.
- 18K. Steinberg, X. Yuan, N. Lazouski, C. K. Klein, K. Manthiram, Y. Li, Nat. Energy 2023, 8, 138–148.
- 19E. J. McShane, V. A. Niemann, P. Benedek, X. Fu, A. C. Nielander, I. Chorkendorff, T. F. Jaramillo, M. Cargnello, ACS Energy Lett. 2023, 8, 4024–4032.
- 20N. Lazouski, K. J. Steinberg, M. L. Gala, D. Krishnamurthy, V. Viswanathan, K. Manthiram, ACS Catal. 2022, 12, 5197–5208.
- 21X. Fu, A. Xu, J. B. Pedersen, S. Li, R. Sažinas, Y. Zhou, S. Z. Andersen, M. Saccoccio, N. H. Deissler, J. B. V. Mygind, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Nat. Commun. 2024, 15, 2417.
- 22S. Li, Y. Zhou, K. Li, M. Saccoccio, R. Sažinas, S. Z. Andersen, J. B. Pedersen, X. Fu, V. Shadravan, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Joule 2022, 6, 2083–2101.
- 23J. B. V. Mygind, J. B. Pedersen, K. Li, N. H. Deissler, M. Saccoccio, X. Fu, S. Li, R. Sažinas, S. Z. Andersen, K. Enemark-Rasmussen, P. C. K. Vesborg, J. Doganli-Kibsgaard, I. Chorkendorff, ChemSusChem 2023, 16, e202301011.
- 24N. H. Deissler, J. B. V. Mygind, K. Li, V. A. Niemann, P. Benedek, V. Vinci, S. Li, X. Fu, P. C. K. Vesborg, T. F. Jaramillo, J. Kibsgaard, J. Drnec, I. Chorkendorff, Energy Environ. Sci. 2024, 17, 3482–3492.
- 25X. Fu, V. A. Niemann, Y. Zhou, S. Li, K. Zhang, J. B. Pedersen, M. Saccoccio, S. Z. Andersen, K. Enemark-Rasmussen, P. Benedek, A. Xu, N. H. Deissler, J. B. V. Mygind, A. C. Nielander, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Nat. Mater. 2024, 23, 101–107.
- 26L. A. Román-Ramírez, J. Marco, Appl. Energy 2022, 320, 119305.
- 27R. Leardi, Anal. Chim. Acta 2009, 652, 161–172.
- 28U. M. F. M. Cerqueira, M. A. Bezerra, S. L. C. Ferreira, R. De Jesu Araújo, B. N. Da Silva, C. G. Novaes, Food Chem. 2021, 364, 130429.
- 29M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, L. A. Escaleira, Talanta 2008, 76, 965–977.
- 30T. Schedlbauer, S. Krüger, R. W. Schmitz, R. W. Schmitz, C. Schreiner, H. J. Gores, S. Passerini, M. Winter, Electrochim. Acta 2013, 92, 102–107.
- 31T. Hou, G. Yang, N. N. Rajput, J. Self, S. W. Park, J. Nanda, K. A. Persson, Nano Energy 2019, 64, 103881.
- 32Y. Surace, D. Leanza, M. Mirolo, Ł. Kondracki, C. A. F. Vaz, M. El Kazzi, P. Novák, S. Trabesinger, Energy Storage Mater. 2022, 44, 156–167.
- 33F. Hildenbrand, F. Aupperle, G. Stahl, E. Figgmeier, D. U. Sauer, Batteries & Supercaps 2022, 5, e202200038.
- 34M. Alidoost, A. Mangini, F. Caldera, A. Anceschi, J. Amici, Chem. Eur. J. Res. 2022, 28, e202104201.
- 35M. He, R. Guo, G. M. Hobold, H. Gao, B. M. Gallant, PNAS 2020, 117, 73–79.
- 36S. Jurng, Z. L. Brown, J. Kim, B. L. Lucht, Energy Environ. Sci. 2018, 11, 2600–2608.
- 37B. S. Parimalam, B. L. Lucht, J. Electrochem. Soc. 2018, 165, A251–A255.
- 38G. V. Zhuang, K. Xu, T. R. Jow, P. N. Ross, Electrochem. Solid-State Lett. 2004, 7, A224.
- 39A. Zecchina, F. Geobaldo, G. Spoto, S. Bordiga, G. Ricchiardi, R. Buzzoni, G. Petrini, J. Phys. Chem. 1996, 100, 16584–16599.
- 40M. Xu, L. Zhou, L. Hao, L. Xing, W. Li, B. L. Lucht, J. Power Sources 2011, 196, 6794–6801.
- 41S. J. Lee, J. G. Han, Y. Lee, M. H. Jeong, W. C. Shin, M. Ue, N. S. Choi, Electrochim. Acta 2014, 137, 1–8.
- 42E. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703–A1719.
- 43V. A. Niemann, M. Doucet, P. Benedek, N. H. Deissler, J. B. V Mygind, S. W. Lee, ChemRxiv. 2024, 1–24.
- 44J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587–603.
- 45G. R. Zhuang, K. Wang, Y. Chen, P. N. Ross, J. Vac. Sci. Technol. A 1998, 16, 3041–3045.
- 46J. Zheng, J. A. Lochala, A. Kwok, Z. D. Deng, J. Xiao, Adv. Sci. 2017, 4, 1–19.
- 47T. Hou, K. D. Fong, J. Wang, K. A. Persson, Chem. Sci. 2021, 12, 14740–14751.
- 48S. Hwang, D. H. Kim, J. H. Shin, J. E. Jang, K. H. Ahn, C. Lee, H. Lee, J. Phys. Chem. C 2018, 122, 19438–19446.
- 49Y. Han, C. Lim, Y. Kim, H. Baek, S. Jeon, J. W. Han, K. Yong, ACS Energy Lett. 2024, 5509–5519.
- 50V. Gutmann, E. Wychera, Inorg. Nucl. Chem. Lett. 1966, 2, 257–260.
- 51A. Mangini, L. Fagiolari, A. Sacchetti, A. Garbujo, P. Biasi, F. Bella, Adv. Energy Mater. 2024, 14, 2400076.
- 52J. F. Coetzee, T.-H. Chang, Pure Appl. Chem. 1985, 57, 633–638.
- 53S. S. Zhang, K. Xu, T. R. Jow, J. Electrochem. Soc. 2002, 149, A586–A590.
- 54H. Kwon, H. Kim, J. Hwang, W. Oh, Y. Roh, D. Shin, H. T. Kim, Nat. Energy 2024, 9, 57–69.
- 55M. Yeddala, L. Rynearson, B. L. Lucht, ACS Energy Lett. 2023, 8, 4782–4793.
- 56S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B. D. Adams, C. Ma, J. Liu, J. G. Zhang, W. Xu, Nat. Energy 2018, 3, 739–746.
- 57Z. Liu, W. Hou, H. Tian, Q. Qiu, I. Ullah, S. Qiu, W. Sun, Q. Yu, J. Yuan, L. Xia, X. Wu, Angew. Chem. Int. Ed. 2024, 63, e202400110.
- 58T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Joule 2019, 3, 2647–2661.
- 59H. L. Du, M. Chatti, R. Y. Hodgetts, P. V. Cherepanov, C. K. Nguyen, K. Matuszek, D. R. MacFarlane, A. N. Simonov, Nature 2022, 609, 722–727.
- 60X. Fu, S. Li, N. H. Deissler, J. B. V. Mygind, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 2024, 9, 3790–3795.
- 61C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mater. 2015, 27, 2591–2599.
- 62K. Li, S. Z. Andersen, M. J. Statt, M. Saccoccio, V. J. Bukas, K. Krempl, R. Sažinas, J. B. Pedersen, V. Shadravan, Y. Zhou, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Science 2021, 374, 1593–1597.
- 63L. Xia, S. Lee, Y. Jiang, Y. Xia, G. Z. Chen, Z. Liu, ACS Omega 2017, 2, 8741–8750.
- 64H. Iriawan, A. Herzog, S. Yu, N. Ceribelli, Y. Shao-Horn, ACS Energy Lett. 2024, 9, 4883–4891.
- 65T. Chen, J. You, R. Li, H. Li, Y. Wang, C. Wu, Y. Sun, L. Yang, Z. Ye, B. Zhong, Z. Wu, X. Guo, Adv. Sci. 2022, 9, 1–11.
- 66K. Li, S. G. Shapel, D. Hochfilzer, J. B. Pedersen, K. Krempl, S. Z. Andersen, R. Sažinas, M. Saccoccio, S. Li, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, ACS Energy Lett. 2022, 7, 36–41.
- 67M. C. Hatzell, ACS Energy Lett. 2022, 7, 4132–4133.
- 68D. Aurbach, I. Weissman, Electrochem. Commun. 1999, 1, 324–331.
- 69M. Spry, O. Westhead, R. Tort, B. Moss, Y. Katayama, M. Titirici, I. E. L. Stephens, A. Bagger, ACS Energy Lett. 2023, 8, 1230–1235.
- 70H. Du, K. Matuszek, R. Y. Hodgetts, K. N. Dinh, P. V. Cherepanov, J. M. Bakker, D. R. Macfarlane, A. N. Simonov, Energy Environ. Sci. 2023, 16, 1082–1090.
- 71W. Song, E. S. Scholtis, P. C. Sherrell, D. K. H. Tsang, J. Ngiam, J. Lischner, S. Fearn, V. Bemmer, C. Mattevi, N. Klein, F. Xie, D. J. Riley, Energy Environ. Sci. 2020, 13, 4977–4989.
- 72O. Westhead, R. Tort, M. Spry, J. Rietbrock, R. Jervis, A. Grimaud, A. Bagger, I. E. Stephens, Faraday Discuss. 2022, 243, 321–338.
- 73S. D. Han, J. L. Allen, E. Jónsson, P. Johansson, D. W. McOwen, P. D. Boyle, W. A. Henderson, J. Phys. Chem. C 2013, 117, 5521–5531.
- 74O. Westhead, M. Spry, A. Bagger, Z. Shen, H. Yadegari, S. Favero, R. Tort, M.-M. Titirici, M. P. Ryan, R. Jervis, Y. Katayama, A. Aguadero, A. Regoutz, A. Grimaud, I. E. L. Stephens, J. Mater. Chem. A 2023, 11, 12746–12758.
- 75G. Valette, J. Electroanal. Chem. 1981, 122, 285–297.
- 76M. A. Brown, A. Goel, Z. Abbas, Angew. Chem. Int. Ed. 2016, 55, 3790–3794.
- 77X. Fu, J. Zhang, Y. Kang, Chem Catal. 2022, 2, 2590–2613.
- 78P. M. Biesheuvel, Y. Fu, M. Z. Bazant, Phys. Rev. E 2011, 83, 061507.
- 79C. Lian, D. E. Jiang, H. Liu, J. Wu, J. Phys. Chem. C 2016, 120, 8704–8710.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.