Komplexer Tanz von Molekülen am Himmel: Choreographie der intermolekularen Struktur und Dynamik im heteroternären Cluster Cyclopenten−CO2−H2O
Xiao Tian
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorJuncheng Lei
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorTianyue Gao
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorSiyu Zou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorXiujuan Wang
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3 A, 30167 Hannover, Germany
Search for more papers by this authorMeiyue Li
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorChenxu Wang
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorDr. Junhua Chen
School of Pharmacy, Guizhou Medical University, 561113 Guiyang, Guizhou, China
Search for more papers by this authorProf. Dr. Jens-Uwe Grabow
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3 A, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Wolfgang Jäger
Department of Chemistry, University of Alberta, T6G 2G2 Edmonton, AB, Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Gou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorXiao Tian
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorJuncheng Lei
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorTianyue Gao
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorSiyu Zou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorXiujuan Wang
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3 A, 30167 Hannover, Germany
Search for more papers by this authorMeiyue Li
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorChenxu Wang
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorDr. Junhua Chen
School of Pharmacy, Guizhou Medical University, 561113 Guiyang, Guizhou, China
Search for more papers by this authorProf. Dr. Jens-Uwe Grabow
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3 A, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Wolfgang Jäger
Department of Chemistry, University of Alberta, T6G 2G2 Edmonton, AB, Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Gou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorAbstract
Diese Studie untersucht die treibenden Kräfte hinter der Bildung eines heteroternären Clusters, der aus flüchtigen organischen Verbindungen industrieller Herkunft oder Verbrennungsquellen, insbesondere Cyclopenten, neben Treibhausgasen wie Kohlendioxid und Wasserdampf besteht. Obwohl beim Verständnis binärer Komplexe erhebliche Fortschritte erzielt wurden, sind die strukturellen Feinheiten heteroternärer Cluster weitgehend unerforscht. Unsere Studie charakterisiert den heteroternären Cyclopenten−CO2−H2O-Cluster mithilfe der Fourier-Transformations-Mikrowellenspektroskopie. Im gepulsten Strahl wird ein Isomer beobachtet, in dem sich CO2 und H2O über dem Cyclopentenring ausrichten, wobei Wasser eine interne Rotation um seine C2-Symmetrieachse vollführt. Theoretische Analysen stützen diese Beobachtungen und identifizieren eine O−H⋅⋅⋅π-Wasserstoffbrücke und eine sekundäre C⋅⋅⋅O-Tetrelbindung innerhalb des Clusters. Diese Studie stellt einen entscheidenden Schritt zum Verständnis der molekularen Dynamik und Wechselwirkungen von VOCs, Treibhausgasen und Wasser in der Atmosphäre dar und ebnet den Weg für weitere Untersuchungen ihrer Rollen in der Klimadynamik und Luftqualität.
Open Research
Data Availability Statement
Die Daten, die die Ergebnisse dieser Studie unterstützen, sind in den Hintergrundinformationen zu diesem Artikel verfügbar.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202412406-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhou, X. Zhou, C. Wang, H. Zhou, Chemosphere 2023, 313, 137489.
- 2
- 2aU. Pöschl, Angew. Chem. Int. Ed. 2005, 44, 7520–7540;
- 2bJ. Zhong, M. Kumar, J. S. Francisco, X. C. Zeng, Acc. Chem. Res. 2018, 51, 1229–1237.
- 3
- 3aR. Atkinson, Atmos. Environ. 2000, 34, 2063–2101;
- 3bT. Berndt, E. H. Hoffmann, A. Tilgner, F. Stratmann, H. Herrmann, Nat. Commun. 2023, 14, 4849.
- 4
- 4aM. Takeuchi, T. Berkemeier, G. Eris, N. L. Ng, Nat. Commun. 2022, 13, 7883;
- 4bE. R. Delaria, R. C. Cohen, Acc. Chem. Res. 2023, 56, 1720–1730.
- 5W. Fan, T. Chen, Z. Zhu, H. Zhang, Y. Qiu, D. Yin, J. Hazard. Mater. 2022, 430, 128406.
- 6X. Peng, T.-T. Xie, M.-X. Tang, Y. Cheng, Y. Peng, F.-H. Wei, L.-M. Cao, K. Yu, K. Du, L.-Y. He, X.-F. Huang, Environ. Sci. Technol. Lett. 2023, 10, 976–982.
- 7R.-J. Huang, Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. E. Haddad, A. S. H. Prévôt, Nature 2014, 514, 218–222.
- 8
- 8aC. Werner, L. K. Meredith, S. N. Ladd, J. Ingrisch, A. Kübert, J. van Haren, M. Bahn, K. Bailey, I. Bamberger, M. Beyer, Science 2021, 374, 1514–1518;
- 8bZ. Yang, Z. Xian, Q. Li, H. Zhang, H. Wei, Y. Jiang, C. Zheng, X Gao, Environ. Sci. Technol. 2024, 58, 7196–7207.
- 9
- 9aR. E. Smalley, L. Wharton, D. H. Levy, J. Chem. Phys. 1975, 63, 4977–4989;
- 9bM. Herman, R. Georges, M. Hepp, D. Hurtmans, Int. Rev. Phys. Chem. 2000, 19, 277–325.
- 10Y. Zheng, S. Herbers, Q. Gou, W. Caminati, J.-U. Grabow, J. Phys. Chem. Lett. 2021, 12, 3907–3913.
- 11
- 11aS. Suzuki, P. G. Green, R. E. Bumgarner, S. Dasgupta, W. A. Goddard III, G. A. Blake, Science 1992, 257, 942–945;
- 11bL. Evangelisti, K. Brendel, H. Mäder, W. Caminati, S. Melandri, Angew. Chem. Int. Ed. 2017, 56, 13699–13703;
- 11cS. R. Domingos, K. Martin, N. Avarvari, M. Schnell, Angew. Chem. Int. Ed. 2019, 58, 11257–11261;
- 11dD. Loru, A. L. Steber, C. Pérez, D. A. Obenchain, B. Temelso, J. C. López, M. Schnell, J. Am. Chem. Soc. 2023, 145, 17201–17210.
- 12
- 12aE. G. Schnitzler, N. A. Seifert, I. Kusuma, W. Jäger, J. Phys. Chem. A 2017, 121, 8625–8631;
- 12bW. Cheng, Y. Zheng, G. Feng, J.-U. Grabow, Q. Gou, Spectrochim. Acta Part A 2020, 239, 118434;
- 12cX. Wang, S. Gao, J. Chen, W. Du, W. Cheng, X. Xu, Q. Gou, J. Phys. Chem. A 2022, 126, 623–629;
- 12dM. Li, Y. Zheng, J. Lei, J. Chen, M. Li, X. Xu, Q. Gou, J.-U. Grabow, Spectrochim. Acta Part A 2024, 317, 124425.
- 13
- 13aW. Li, M. M. Quesada-Moreno, P. Pinacho, M. Schnell, Angew. Chem. Int. Ed. 2021, 60, 5323–5330;
- 13bS. Baweja, S. Panchagnula, M. E. Sanz, L. Evangelisti, C. Pérez, C. West, B. H. Pate, J. Phys. Chem. Lett. 2022, 13, 9510–9516;
- 13cA. L. Steber, B. Temelso, Z. Kisiel, M. Schnell, C. Pérez, Proc. Nat. Acad. Sci. 2023, 120, e2214970120;
- 13dS. Blanco, P. Pinacho, J. C. López, J. Phys. Chem. Lett. 2017, 8, 6060–6066;
- 13eJ. Li, X. Wang, X. Zhang, J. Chen, H. Wang, X. Tian, X. Xu, Q. Gou, Phys. Chem. Chem. Phys. 2023, 25, 4611–4616;
- 13fM. Li, W. Li, C. Pérez, A. Lesarri, J.-U. Grabow, Angew. Chem. Int. Ed. 2024, e202404447;
- 13gE. Burevschi, M. Chrayteh, S. I. Murugachandran, D. Loru, P. Dréan, M. E. Sanz, J. Am. Chem. Soc. 2024, 146, 10925–10933;
- 13hP. Pinacho, J. C. López, Z. Kisiel, S. Blanco, J. Chem. Phys. 2024, 160, 164315;
- 13iC. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Science 2012, 336, 897–901.
- 14A. S. Hazrah, A. Insausti, J. Ma, M. H. Al-Jabiri, W. Jäger, Y. Xu, Angew. Chem. Int. Ed. 2023, 135, e202310610.
10.1002/ange.202310610 Google Scholar
- 15C. Li, R. Signorell, J. Aerosol Sci. 2021, 153, 105676.
- 16
- 16aS. Zou, J. Lei, T. Gao, X. Xu, Q. Gou, J. Phys. Chem. A 2023, 127, 9959–9965;
- 16bH. Wang, J. Chen, Y. Zheng, D. A. Obenchain, X. Xu, Q. Gou, J.-U. Grabow, W. Caminati, J. Phys. Chem. Lett. 2021, 13, 149–155.
- 17
- 17aH. Wang, J. Chen, W. Cheng, Y. Zheng, S. Zou, W. Du, X. Xu, Q. Gou, Spectrochim. Acta Part A 2022, 282, 121677;
- 17bW. Li, S. Melandri, L. Evangelisti, C. Calabrese, A. Vigorito, A. Maris, Phys. Chem. Chem. Phys. 2021, 23, 16915–16922;
- 17cH. Wang, X. Wang, X. Tian, W. Cheng, Y. Zheng, D. A. Obenchain, X. Xu, Q. Gou, Phys. Chem. Chem. Phys. 2021, 23, 25784–25788;
- 17dW. Cheng, Y. Zheng, S. Herbers, H. Zheng, Q. Gou, ChemPhysChem 2020, 22, 154–159;
- 17eM. Li, J. Lei, G. Feng, J.-U. Grabow, Q. Gou, Spectrochim. Acta Part A 2020, 238, 118424;
- 17fS. Gao, D. A. Obenchain, J. Lei, G. Feng, S. Herbers, Q. Gou, J.-U. Grabow, Phys. Chem. Chem. Phys. 2019, 21, 7016–7020.
- 18F. Xie, W. Sun, P. Pinacho, M. Schnell, Angew. Chem. Int. Ed. 2023, 135, e202218539.
- 19
- 19aT. Emilsson, T. D. Klots, R. S. Ruoff, H. S. Gutowsky, J. Chem. Phys. 1990, 93, 6971–6976;
- 19bM. B. Craddock, C. S. Brauer, K. J. Higgins, K. R. Leopold, J. Mol. Spectrosc. 2003, 222, 63–73;
- 19cC. S. Brauer, M. B. Craddock, K. J. Higgins, K. R. Leopold, Mol. Phys. 2006, 104, 3303–3315.
- 20
- 20aH. S. Gutowsky, A. C. Hoey, S. L. Tschopp, J. D. Keen, C. E. Dykstra, J. Chem. Phys. 1995, 102, 3032–3040;
- 20bY. Xu, W. Jager, Mol. Phys. 1998, 93, 727–737;
- 20cY. Xu, G. S. Armstrong, W. Jäger, J. Chem. Phys. 1999, 110, 4354–4362;
- 20dM. S. Ngar, Y. Xu, W. Jäger, Mol. Phys. 2001, 99, 13–24.
- 21
- 21aE. Arunan, T. Emilsson, H. S. Gutowsky, J. Chem. Phys. 1993, 99, 6208–6210;
- 21bE. Arunan, T. Emilsson, H. Gutowsky, J. Chem. Phys. 1994, 101, 861–868;
- 21cS. Melandri, B. M. Giuliano, A. Maris, L. Evangelisti, B. Velino, W. Caminati, ChemPhysChem 2009, 10, 2503–2507.
- 22C. C. Austin, D. Wang, D. J. Ecobichon, G. Dussault, J. Toxicol. Environ. Health Part A 2001, 63, 437–458.
- 23H. Hsiao-Ching, W. San-Jang, O. J. Di-Yi, W. D. S. Hill, Ind. Eng. Chem. Res. 2015, 54, 9798–9804.
- 24G. W. Rathjens, Jr., J. Chem. Phys. 1962, 36, 2401–2406.
- 25P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.
- 26M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.0, Gaussian, Inc., Wallingford, CT, 2016.
- 27S. Grimme, J. Chem. Phys. 2006, 124, 034108.
- 28S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 29R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650–654.
- 30S. Simon, M. Duran, J. Dannenberg, J. Chem. Phys. 1996, 105, 11024–11031.
- 31
- 31aT. J. Balle, W. H. Flygare, Rev. Sci. Instrum. 1981, 52, 33–45;
- 31bJ.-U. Grabow, W. Stahl, H. Dreizler, Rev. Sci. Instrum. 1996, 67, 4072–4084;
- 31cQ. Gou, G. Feng, J.-U. Grabow, in 72nd International Symposium on Molecular Spectroscopy, 2017, p. TH03;
- 31dJ. Chen, Y. Zheng, J. Wang, G. Feng, Z. Xia, Q. Gou, J. Chem. Phys. 2017, 147, 094301.
- 32J. Wang, L. Spada, J. Chen, S. Gao, S. Alessandrini, G. Feng, C. Puzzarini, Q. Gou, J. U. Grabow, V. Barone, Angew. Chem. Int. Ed. 2019, 58, 13935–13941.
- 33J. Lei, X. Tian, J. Wang, S. Herbers, M. Li, T. Gao, S. Zou, J.-U. Grabow, Q. Gou, J. Phys. Chem. Lett. 2024, 15, 7597–7602 .
- 34
- 34aK. I. Peterson, R. D. Suenram, F. J. Lovas, J. Chem. Phys. 1989, 90, 5964–5970;
- 34bK. I. Peterson, R. D. Suenram, F. J. Lovas, J. Chem. Phys. 1991, 94, 106–117;
- 34cH. G. Columberg, A. N. Bauder, Mol. Phys. 2010, 93, 215–228.
- 35H. M. Pickett, J. Mol. Spectrosc. 1991, 148, 371–377.
- 36J. K. Watson, J. Chem. Phys. 1967, 46, 1935–1949.
- 37M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275–280.
- 38Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2007, 120, 215–241.
- 39P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Chem. Phys. 1994, 98, 11623–11627.
- 40J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- 41F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 42T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539–555.
- 43T. Lu, F. Chen, J. Comput. Chem. 2011, 33, 580–592.
- 44W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
- 45E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605–1612.
- 46E. D. Glendening, C. R. Landis, F. Weinhold, WIREs Comput. Mol. Sci. 2011, 2, 1–42.
- 47M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962–975.
- 48T. Lu, Q. Chen, J. Phys. Chem. A 2023, 127, 7023–7035.
- 49J.-U. Grabow, FTMW++, Program for the experiment control, data acquisition, and analysis, Leibniz Universität Hannover, Hannover (Germany), 2004.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.