High-Entropy Sulfide Catalyst Boosts Energy-Saving Electrochemical Sulfion Upgrading to Thiosulfate Coupled with Hydrogen Production
Yuhou Pei
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorDi Li
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorCorresponding Author
Chuntian Qiu
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorLiang Yan
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZongmiao Li
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorZexin Yu
Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany
Search for more papers by this authorWenzhang Fang
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorCorresponding Author
Yingying Lu
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorCorresponding Author
Bing Zhang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorYuhou Pei
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorDi Li
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorCorresponding Author
Chuntian Qiu
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorLiang Yan
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZongmiao Li
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorZexin Yu
Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany
Search for more papers by this authorWenzhang Fang
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorCorresponding Author
Yingying Lu
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorCorresponding Author
Bing Zhang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 P.R. China
Search for more papers by this authorAbstract
Electrochemical sulfion oxidation reaction (SOR) offers a sustainable strategy for sulfion-rich wastewater treatment, which can couple with cathodic hydrogen evolution reaction (HER) for energy-saving hydrogen production. However, the corrosion and passivation of sulfur species render the inferior catalytic SOR performance, and the oxidation product, polysulfide, requires further acidification to recover cheap elementary sulfur. Here, we reported an amorphous high-entropy sulfide catalyst of CuCoNiMnCrSx nanosheets in situ growth on the nickel foam (CuCoNiMnCrSx/NF) for SOR, which achieved an ultra-low potential of 0.25 V to afford 100 mA cm−2, and stable electrolysis at as high as 1 A cm−2 for 100 h. These were endowed by the manipulated chemical environments surrounding Cu+ sites and the constructed “soft-acid” to “hard-acid” adsorption/desorption sites, enabling synergistically boosted adsorption/desorption process of sulfur species during SOR. Moreover, we developed an electrochemical-chemical tandem process to convert sulfions to value-added thiosulfate, providing a good choice for simultaneous wastewater utilization and hydrogen production.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202411977-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Zhang, Z. Wang, J. Qiu, Adv. Mater. 2022, 34, e2109321;
- 1bK. Yang, N. Zhang, J. Yang, Z. Xu, J. Yan, D. Li, S. Liu, Appl. Catal. B-Environ. 2023, 332, 122718;
- 1cS. Zhang, Q. Zhou, Z. Shen, X. Jin, Y. Zhang, M. Shi, J. Zhou, J. Liu, Z. Lu, Y. N. Zhou, Adv. Funct. Mater. 2021, 31, 2101922;
- 1dA. G. De Crisci, A. Moniri, Y. Xu, Int. J. Hydrogen Energy 2019, 44, 1299–1327.
- 2
- 2aE. Ntagia, E. Fiset, L. Truong Cong Hong, E. Vaiopoulou, K. Rabaey, J. Hazard Mater. 2020, 388, 121770;
- 2bW. Wang, Q. Mao, K. Deng, H. Yu, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Small 2023, e2207852.
- 3
- 3aE. Vaiopoulou, T. Provijn, A. Prevoteau, I. Pikaar, K. Rabaey, Water Res. 2016, 92, 38–43;
- 3bE. Ntagia, E. Fiset, L. da Silva Lima, I. Pikaar, X. Zhang, A. W. Jeremiasse, A. Prévoteau, K. Rabaey, Water Res. 2019, 149, 111–119;
- 3cY. Pei, J. Cheng, H. Zhong, Z. Pi, Y. Zhao, F. Jin, Green. Chem. 2021, 23, 6975–6983.
- 4
- 4aZ. He, J. Zhang, Z. Gong, H. Lei, D. Zhou, N. Zhang, W. Mai, S. Zhao, Y. Chen, Nat. Commun. 2022, 13, 2191;
- 4bY. H. Pei, Z. F. Pi, H. Zhong, J. Cheng, F. M. Jin, J. Mater. Chem. A 2022, 10, 1309–1319;
- 4cJ. Na, B. Seo, J. Kim, C. W. Lee, H. Lee, Y. J. Hwang, B. K. Min, D. K. Lee, H. S. Oh, U. Lee, Nat. Commun. 2019, 10, 5193;
- 4dH. Zhao, D. Lu, J. Wang, W. Tu, D. Wu, S. W. Koh, P. Gao, Z. J. Xu, S. Deng, Y. Zhou, Nat. Commun. 2021, 12, 2008;
- 4eX. Liu, J. He, S. Zhao, Y. Liu, Z. Zhao, J. Luo, G. Hu, X. Sun, Y. Ding, Nat. Commun. 2018, 9, 4365;
- 4fY. Pei, C. Wang, H. Zhong, F. Jin, ACS Sustain. Chem. Eng. 2022, 10, 12670–12678;
- 4gT. Wang, X. Cao, L. Jiao, Angew. Chem. Int. Ed. 2022, 61, e202213328;
- 4hD. Yan, C. Mebrahtu, S. Wang, R. Palkovits, Angew. Chem. Int. Ed. 2023, 62, e202214333;
- 4iX. Jia, H. Kang, G. Hou, W. Wu, S. Lu, Y. Li, Q. Wang, W. Qin, X. Wu, Angew. Chem. Int. Ed. 2024, 63, e202318248.
- 5
- 5aL. Yi, Y. Ji, P. Shao, J. Chen, J. Li, H. Li, K. Chen, X. Peng, Z. Wen, Angew. Chem. Int. Ed. 2021, 60, 21550–21557;
- 5bW.-J. Liu, Z. Xu, D. Zhao, X.-Q. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao, S. Jin, Nat. Commun. 2020, 11, 1–11;
- 5cY. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun. 2019, 10, 5335;
- 5dY. X. Chen, A. Lavacchi, H. A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, F. Vizza, Nat. Commun. 2014, 5, 4036.
- 6
- 6aM. Zhang, J. Guan, Y. Tu, S. Chen, Y. Wang, S. Wang, L. Yu, C. Ma, D. Deng, X. Bao, Energ. Environ. Sci. 2020, 13, 119–126;
- 6bQ. Mao, X. Mu, K. Deng, H. Yu, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, ACS Nano 2023, 17, 790–800.
- 7
- 7aJ.-T. Ren, L. Chen, H.-Y. Wang, W.-W. Tian, Z.-Y. Yuan, Energ. Environ. Sci. 2023, 17, 49–113;
- 7bH. Yu, W. Wang, Q. Mao, K. Deng, Y. Xu, Z. Wang, X. Li, H. Wang, L. Wang, J. Mater. Chem. A 2023, 11, 2218–2224.
- 8
- 8aR. G. Pearson, J. Chem. Educ. 1968, 45, 581;
- 8bR. G. Pearson, J. Chem. Educ. 1968, 45, 643;
- 8cR. G. Pearson, Inorg. Chem. 1988, 27, 734–740.
- 9Q. He, Y. Gorlin, M. U. M. Patel, H. A. Gasteiger, Y.-C. Lu, J. Electrochem. Soc. 2018, 165, A4027–A4033.
- 10A. Kamyshny, A. Goifman, J. Gun, D. Rizkov, O. Lev, Environ. Sci. Technol. 2004, 38, 6633–6644.
- 11
- 11aC. Cao, D. D. Ma, J. Jia, Q. Xu, X. T. Wu, Q. L. Zhu, Adv. Mater. 2021, 33, e2008631;
- 11bL. Lv, X. He, J. Wang, Y. Ruan, S. Ouyang, H. Yuan, T. Zhang, Appl. Catal. B-Environ. 2021, 298, 120531.
- 12Z. Du, J. Tong, W. Guo, H. Zhang, X. Zhong, J. Mater. Chem. A 2016, 4, 11754–11761.
- 13K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J. L. Luo, X. Z. Fu, Adv. Funct. Mater. 2020, 1909610.
- 14
- 14aK. Jin, M. Zhou, H. Zhao, S. Zhai, F. Ge, Y. Zhao, Z. Cai, Electrochim. Acta 2019, 295, 668–676;
- 14bH. Wang, L. Hu, H. Zhou, Y. Zhang, Int. J. Hydrogen Energy 2021, 46, 35239–35247.
- 15
- 15aK. Petrov, S. Srinivasan, Int. J. Hydrogen Energy 1996, 21, 163–169;
- 15bW. Wang, Q. Mao, S. Jiang, K. Deng, H. Yu, Z. Wang, Y. Xu, L. Wang, H. Wang, Appl. Catal. B-Environ. 2024, 340, 123194.
- 16
- 16aB. Zhao, X. Long, Q. Zhao, M. Shakouri, R. Feng, L. Lin, Y. Zeng, Y. Zhang, X.-Z. Fu, J.-L. Luo, Mater. Today Nano 2023, 23, 100362;
- 16bM. Xu, F. Wu, Y. Zhang, Y. Yao, G. Zhu, X. Li, L. Chen, G. Jia, X. Wu, Y. Huang, Nat. Commun. 2023, 14, 6994.
- 17
- 17aA. Pathak, J. W. Shen, M. Usman, L. F. Wei, S. Mendiratta, Y. S. Chang, B. Sainbileg, C. M. Ngue, R. S. Chen, M. Hayashi, Nat. Commun. 2019, 10, 1721;
- 17bB. Ni, J. R. Kramer, N. H. Werstiuk, J. Phys. Chem. A 2032, 107, 2890–2897;
- 17cY. Zhang, J. Li, W. Zhou, X. Liu, X. Song, S. Chen, H. Wang, P. Huo, Appl. Catal. B-Environ. 2024, 342, 123449.
- 18M. Cui, C. Yang, B. Li, Q. Dong, M. Wu, S. Hwang, H. Xie, X. Wang, G. Wang, L. Hu, Adv. Energy Mater. 2020, 11, 2002887.
- 19
- 19aD. He, P. Yang, K. Yang, J. Qiu, Z. Wang, Adv. Funct. Mater. 2024, 2407601;
- 19bR. Bouchal, A. Boulaoued, P. Johansson, Batteries Supercaps 2020, 3, 397–401.
- 20Z. Li, Y.-C. Lu, Nat. Energ. 2021, 6, 517–528.
- 21X. Teng, K. Shi, L. Chen, J. Shi, Angew. Chem. Int. Ed. 2023, e202318585.
- 22
- 22aT. Ingeç, T. Tekin, Chem. Eng. Technol. 2004, 27, 150–153;
- 22bS. W. Dhawale, J. Chem. Educ. 1993, 70, 12.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.