Temperature-Responsive Formation Cycling Enabling LiF-Rich Cathode-Electrolyte Interphase
Luxi Hong
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally: Luxi Hong, Yi Zhang
Search for more papers by this authorYi Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally: Luxi Hong, Yi Zhang
Search for more papers by this authorPan Mei
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorBing Ai
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorYuan Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorChenhuan Zhou
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaoguang Bao
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu P.R. China
Search for more papers by this authorLuxi Hong
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally: Luxi Hong, Yi Zhang
Search for more papers by this authorYi Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally: Luxi Hong, Yi Zhang
Search for more papers by this authorPan Mei
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorBing Ai
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorYuan Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorChenhuan Zhou
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaoguang Bao
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu P.R. China
Search for more papers by this authorAbstract
Formation of LiF-rich cathode-electrolyte interphase is highly desirable for wide-temperature battery, but its application is hindered by the unwanted side reactions associated with conventional method of introducing fluorinated additives. Here, we developed an additive-free strategy to produce LiF-rich cathode electrolyte interphase (CEI) by low-temperature formation cycling. Using LiNi0.33Mn0.33Co0.33O2 as a model cathode, the atomic ratio of LiF in the CEI formed at −5 °C is about 17.7 %, enhanced by ~550 % compared to CEI formed at 25 °C (2.7 %). The underlying mechanism is uncovered by both experiments and theoretic simulation, indicating that the decomposition of LiPF6 to LiF is transformed into spontaneous and exothermic on positively charged cathode surface and lowering the temperature shift chemical equilibrium towards the formation of LiF-rich CEI. Superior to conventional fluorinated additives, this approach is free from unwanted side reactions, imparting batteries with both high-temperature (60 °C) cyclability and low-temperature rate performance (capacity enhanced by 100 % at 3 C at −20 °C). This low-temperature formation cycling to construct LiF-rich CEI is extended to various cathode systems, such as LiNi0.8Mn0.1Co0.1O2, LiCoO2, LiMn2O4, demonstrating the versatility and potential impact of our strategy in advancing the performance and stability of wide-temperature batteries and beyond.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409069-sup-0001-misc_information.pdf11.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J.-M. Tarascon, M. Armand, Nature 2001, 414, 359–367.
- 2M. F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F. N. Sayed, K. Kato, J. Joyner, P. M. Ajayan, Nat. Energy 2017, 2, 17108.
- 3J. Xie, Y. Lu, Nat. Commun. 2020, 11, 2499.
- 4S. Li, K. Wang, Adv. Funct. Mater. 2022, 32, 2200796.
- 5J. Li, S. Li, Y. Zhang, Y. Yang, S. Russi, G. Qian, L. Mu, S.-J. Lee, Z. Yang, J.-S. Lee, P. Pianetta, J. Qiu, D. Ratner, P. Cloetens, K. Zhao, F. Lin, Y. Liu, Adv. Energy Mater. 2021, 11, 2102122.
- 6Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, B. Wu, J. Hu, C. Wang, J. G. Zhang, Y. Qi, J. Xiao, Science 2020, 370, 1313–1317.
- 7P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, J.-G. Zhang, Nat. Energy 2018, 3, 600–605.
- 8G.-L. Xu, Q. Liu, K. K. S. Lau, Y. Liu, X. Liu, H. Gao, X. Zhou, M. Zhuang, Y. Ren, J. Li, M. Shao, M. Ouyang, F. Pan, Z. Chen, K. Amine, G. Chen, Nat. Energy 2019, 4, 484–494.
- 9C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang, L. Ma, C. Yang, E. Hu, X.-Q. Yang, C. Wan, J. Am. Chem. Soc. 2020, 142, 8918–8927.
- 10S. J. Yang, N. Yao, F. N. Jiang, J. Xie, S. Y. Sun, X. Chen, H. Yuan, X. B. Cheng, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202214545.
- 11P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202202731.
- 12Y. Lu, Z. Tu, L. A. Archer, Nat. Mater. 2014, 13, 961–969.
- 13N. von Aspern, G. V. Roschenthaler, M. Winter, I. Cekic-Laskovic, Angew. Chem. Int. Ed. 2019, 58, 15978–16000.
- 14X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Sci. Adv. 2018, 4, 9245.
- 15K. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 16D. Wu, C. Zhu, H. Wang, J. Huang, G. Jiang, Y. Yang, G. Yang, D. Tang, J. Ma, Angew. Chem. Int. Ed. 2024, 63, e202315608.
- 17G. Yang, D. Tang, J. MaSungjemmenla, S. K. V, Energy Technol. 2022, 10, 2200421.
- 18A. M. Haregewoin, A. S. Wotango, B.-J. Hwang, Energy Environ. Sci. 2016, 9, 1955–1988.
- 19M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li, T. Liu, C. Wang, Y. -S Hu, H. Li, X. Huang, L. Chen, L. Suo, Nat. Commun. 2023, 14, 1082.
- 20Y. Zou, G. Liu, Y. Wang, Q. Li, Z. Ma, D. Yin, Y. Liang, Z. Cao, L. Cavallo, H. Kim, L. Wang, H. N. Alshareef, Y.-K. Sun, J. Ming, Adv. Energy Mater. 2023, 13, 2301765.
- 21S. Chen, J. Zhang, Adv. Mater. 2018, 30, 1706102.
- 22Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang, R. Wang, W. Zhang, H. Xia, M. Ge, X. Chen, Angew. Chem. Int. Ed. 2018, 57, 3656–3660.
- 23X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S. C. Liou, K. Amine, K. Xu, C. Wang, Nat. Nanotechnol. 2018, 13, 715–722.
- 24X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, Nat. Energy 2019, 4, 882–890.
- 25Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526–533.
- 26Z. Yu, P. E. Rudnicki, Z. Zhang, Z. Huang, H. Celik, S. T. Oyakhire, Y. Chen, X. Kong, S. C. Kim, X. Xiao, H. Wang, Y. Zheng, G. A. Kamat, M. S. Kim, S. F. Bent, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2022, 7, 94–106.
- 27Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee, K. Kim, E. Nakamura, A. Yamada, Nat. Energy 2020, 5, 291–298.
- 28L. Xia, H. Miao, C. Zhang, G. Z. Chen, J. Yuan, Energy Storage Mater. 2021, 38, 542–570.
- 29H. Gao, F. Maglia, P. Lamp, K. Amine, Z. Chen, ACS Appl. Mater. Interfaces 2017, 9, 44542.
- 30S. Xiang, L. Zhu, L. F, M. Wang, X. Zhang, Y. Tang, D. Sun, H. Wang, eScience 2024, 17, 100291..
- 31H. Su, Z. Chen, M. Li, P. Bai, Y. Li, X. Ji, Z. Liu, J. Sun, J. Ding, M. Yang, X. Yao, C. Mao, Y. Xu, Adv. Mater. 2023, 35, 2301171.
- 32Y. Zhu, Y. Li, M. Bettge, D. P. Abraham, J. Electrochem. Soc. 2012, 159, A2109.
- 33J. Han, I. Park, J. Cha, S. Park, S. Park, S. Myeong, W. Cho, S. Kim, S. You Hong, J. Cho, N. Choi, ChemElectroChem 2017, 4, 56–65.
- 34T. Schedlbauer, U. C. Rodehorst, C. Schreiner, H. J. Gores, M. Winter, Electrochim. Acta. 2013, 107, 26–32.
- 35S. S. Zhang, Electrochem. Commun. 2006, 8, 1423–1428.
- 36Y.-C. Lu, A. N. Mansour, N. Yabuuchi, Y. Shao-Horn, Chem. Mater. 2009, 21, 4408–4424.
- 37Y. Li, H. Pan, L. Gan, M. Zan, Y. Huang, B. Wang, B. Deng, T. Wang, X. Yu, B. Wang, H. Li, X. Huang, Energy Storage Mater. 2024, 67, 103290.
- 38S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma, Q. Liu, Y. Liu, C. Peng, H. Chen, H. Yu, X. Fan, T. Cheng, L. Chen, Y. Li, Z. Wang, X. Wang, Nat. Commun. 2023, 14, 4474.
- 39Y. Jin, P. M. Le, P. Gao, Y. Xu, B. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. Hu, L. Zhong, Nat. Energy 2022, 7, 718–725.
- 40W. Xue, R. Gao, Z. Shi, X. Xiao, W. Zhang, Y. Zhang, Y. G. Zhu, I. Waluyo, Y. Li, M. R. Hill, Energy Environ. Sci. 2021, 14, 6030–6040.
- 41X. Yang, M. Lin, G. Zheng, J. Wu, X. Wang, F. Ren, W. Zhang, Y. Liao, W. Zhao, Z. Zhang, N. Xu, W. Yang, Y. Yang, Adv. Funct. Mater. 2020, 30, 2004664.
- 42L. Yang, A. Xiao, B. L. Lucht, J. Mol. Liq. 2010, 154, 131–133.
- 43H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang, Q. Lv, X. Zhang, L. Wang, X. Han, F. Jin, C. Bao, P. Yan, N. Zhang, D. Wang, T. Cheng, H. Liu, S. Dou, Adv. Mater. 2023, 35, 2208237.
- 44K. Edström, T. Gustafsson, J. O. Thomas, Electrochim. Acta 2004, 50, 397.
- 45B. S. Parimalam, A. D. MacIntosh, R. Kadam, B. L. Lucht, J. Phys. Chem. C 2017, 121, 22733–22738.
- 46T. Kawamura, S. Okada, J.-i. Yamaki, J. Power Sources 2006, 156, 547–554.
- 47S. Wilken, M. Treskow, J. Scheers, P. Johansson, P. Jacobsson, RSC Adv. 2013, 3, 16359.
- 48J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X. Yang, J. Zhang, Nat. Energy 2019, 4, 180–186.
- 49H. Kwon, H. Kim, J. Hwang, W. Oh, Y. Roh, D. Shin, H. Kim, Nat. Energy 2024, 9, 57–69.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.