Optimizing the Microenvironment in Solid Polymer Electrolytes by Anion Vacancy Coupled with Carbon Dots
Huaxin Liu
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorYu Ye
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorFangjun Zhu
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorXue Zhong
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorDingzhong Luo
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Yi Zhang
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Wentao Deng
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Guoqiang Zou
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorCorresponding Author
Prof. Hongshuai Hou
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Xiaobo Ji
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorHuaxin Liu
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorYu Ye
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorFangjun Zhu
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorXue Zhong
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorDingzhong Luo
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Yi Zhang
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Wentao Deng
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Guoqiang Zou
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorCorresponding Author
Prof. Hongshuai Hou
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorProf. Xiaobo Ji
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
Search for more papers by this authorAbstract
The practical application of solid polymer electrolyte is hindered by the small transference number of Li+, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li+ in the electrolyte. Therefore, flower-like SnS2-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS2 have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in situ formed Li2S/Li3N at the interface of Li metal and electrolyte facilitate the fast Li+ diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409044-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M.-H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Nature 2019, 572, 511–515;
- 1bJ. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng, L. Yuan, H. Xu, Y. Huang, Adv. Mater. 2022, 34, 2200912;
- 1cG. Wang, P. He, L.-Z. Fan, Adv. Funct. Mater. 2021, 31, 2007198;
- 1dF. Matsumoto, M. Yamada, M. Tsuta, S. Nakamura, N. Ando, N. Soma, Int. J. Extrem. Manuf. 2023, 5, 012001;
- 1eJ. Li, D. Liu, H. Sun, D. Qu, Z. Xie, H. Tang, J. Liu, SmartMat 2023, 4, e1200;
- 1fZ. Shen, Y. Cheng, S. Sun, X. Ke, L. Liu, Z. Shi, Carbon Energy 2021, 3, 482–508;
- 1gM. Ge, X. Zhou, Y. Qin, Y. Liu, J. Zhou, X. Wang, B. Guo, Chin. Chem. Lett. 2022, 33, 3894–3898;
- 1hX. Wang, X. Shen, P. Zhang, A.-J. Zhou, J.-B. Zhao, Rare Met. 2023, 42, 875–884;
- 1iE. Kartini, V. Yapriadi, H. Jodi, M. Manawan, C. Panghegar, Wahyudianingsih, Prog. Nat. Sci. 2020, 30, 168–173;
- 1jT. M. F. Restle, L. Scherf, J. V. Dums, A. G. Mutschke, R. J. Spranger, H. Kirchhain, A. J. Karttunen, L. van Wüllen, T. F. Fässler, Angew. Chem. Int. Ed. 2023, 62, e202213962.
- 2
- 2aZ.-H. Huang, J.-S. Wei, T.-B. Song, J.-W. Ni, F. Wang, H.-M. Xiong, SmartMat 2022, 3, 323–336;
- 2bH. Zhang, L. Zhou, X. Du, J. Zhang, S. Tian, T. Liu, J. Zhang, S. Hu, W. Song, X. Zhou, G. Cui, Carbon Energy 2022, 4, 1093–1106;
- 2cQ. Yu, K. Jiang, C. Yu, X. Chen, C. Zhang, Y. Yao, B. Jiang, H. Long, Chin. Chem. Lett. 2021, 32, 2659–2678.
- 3
- 3aZ.-Y. Kou, Y. Lu, C. Miao, J.-Q. Li, C.-J. Liu, W. Xiao, Rare Met. 2021, 40, 3175–3184;
- 3bB. Song, L. Su, X. Liu, W. Gao, T. Wang, Y. Ma, Y. Zhong, X.-B. Cheng, Z. Zhu, J. He, Y. Wu, Electron 2023, 1, e13.
10.1002/elt2.13 Google Scholar
- 4
- 4aX. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572–579;
- 4bR. Inada, T. Okada, A. Bando, T. Tojo, Y. Sakurai, Prog. Nat. Sci. 2017, 27, 350–355.
- 5Y. Zhao, L. Wang, Y. Zhou, Z. Liang, N. Tavajohi, B. Li, T. Li, Adv. Sci. 2021, 8, 2003675.
- 6Z. Xu, T. Yang, X. Chu, H. Su, Z. Wang, N. Chen, B. Gu, H. Zhang, W. Deng, H. Zhang, W. Yang, ACS Appl. Mater. Interfaces 2020, 12, 10341–10349.
- 7D. Chen, Y. Liu, C. Feng, Y. He, S. Zhou, B. Yuan, Y. Dong, H. Xie, G. Zeng, J. Han, W. He, Electron 2023, 1, e1.
10.1002/elt2.1 Google Scholar
- 8G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, Adv. Energy Mater. 2018, 8, 1801219.
- 9
- 9aH. Peng, T. Long, J. Peng, H. Chen, L. Ji, H. Sun, L. Huang, S.-G. Sun, Adv. Energy Mater. 2024, n/a, 2400428;
- 9bP. Li, S. Wang, J. Hao, X. Wang, S.-M. Hao, Y. Lu, H. Li, W. Zhou, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202309613.
- 10X. Yang, L. Fang, J. Li, C. Liu, L. Zhong, F. Yang, X. Wang, Z. Zhang, D. Yu, Angew. Chem. Int. Ed. 2024, n/a, e202401957.
- 11L. Wu, H. Lv, R. Zhang, P. Ding, M. Tang, S. Liu, L. Wang, F. Liu, X. Guo, H. Yu, ACS Nano 2024, 18, 5498–5509.
- 12W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, ACS Nano 2016, 10, 11407–11413.
- 13Y. Zhou, F. Liao, Y. Liu, Z. Kang, Int. J. Extrem. Manuf. 2022, 4, 042001.
- 14
- 14aL. Li, Y. Li, Y. Ye, R. Guo, A. Wang, G. Zou, H. Hou, X. Ji, ACS Nano 2021, 15, 6872–6885;
- 14bL. Xu, J. Li, L. Li, Z. Luo, Y. Xiang, W. Deng, G. Zou, H. Hou, X. Ji, Small 2021, 17, 2102978.
- 15J. He, L. Hu, C. Shao, S. Jiang, C. Sun, S. Song, ACS Nano 2021, 15, 18006–18013.
- 16Y. Lei, S. Song, W. Fan, Y. Xing, H. Zhang, J. Phys. Chem. C 2009, 113, 1280–1285.
- 17X. Wang, H. Hua, X. Xie, P. Zhang, J. Zhao, Solid State Ionics 2021, 372, 115768.
- 18X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun, N. Holmes, H. Duan, S. Mukherjee, K. Adair, C. Zhao, J. Liang, W. Li, J. Li, Y. Liu, H. Huang, L. Zhang, S. Lu, Q. Lu, R. Li, C. V. Singh, X. Sun, Energy Environ. Sci. 2020, 13, 1318–1325.
- 19W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song, K. Chen, L. Wang, Z. Ma, J. Liu, Angew. Chem. Int. Ed. 2024, 63, e202320149.
- 20
- 20aB. Zhao, W. Ma, B. Li, X. Hu, S. Lu, X. Liu, Y. Jiang, J. Zhang, Nano Energy 2022, 91, 106643;
- 20bB. Hu, W. Yu, B. Xu, X. Zhang, T. Liu, Y. Shen, Y.-H. Lin, C.-W. Nan, L. Li, ACS Appl. Mater. Interfaces 2019, 11, 34939–34947;
- 20cK. Shi, Z. Wan, L. Yang, Y. Zhang, Y. Huang, S. Su, H. Xia, K. Jiang, L. Shen, Y. Hu, S. Zhang, J. Yu, F. Ren, Y.-B. He, F. Kang, Angew. Chem. Int. Ed. 2020, 59, 11784–11788.
- 21L.-P. Hou, L.-Y. Yao, C.-X. Bi, J. Xie, B.-Q. Li, J.-Q. Huang, X.-Q. Zhang, J. Energy Chem. 2022, 68, 300–305.
- 22F. Zhu, W. Deng, B. Zhang, H. Wang, L. Xu, H. Liu, Z. Luo, G. Zou, H. Hou, X. Ji, Nano Energy 2023, 111, 108416.
- 23X. Zhang, Q. Su, G. Du, B. Xu, S. Wang, Z. Chen, L. Wang, W. Huang, H. Pang, Angew. Chem. Int. Ed. 2023, 62, e202304947.
- 24Y. Kudo, N. Yoshida, M. Fujimoto, K. Tanaka, I. Toyoshima, Bull. Chem. Soc. Jpn. 1986, 59, 1481–1486.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.