Configurational Isomerization-Induced Orientation Switching: Non-Fused Ring Dipodal Phosphonic Acids as Hole-Extraction Layers for Efficient Organic Solar Cells
Lei Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work
Search for more papers by this authorYuxing Wang
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work
Search for more papers by this authorJunjie Wen
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYifan Huang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJiaxin Gao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYuxin Duan
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorSoohyung Park
Advanced Analysis Center, Korea Institute of Science and Technology, and Division of Nanoscience & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792 Republic of Korea
Search for more papers by this authorWoojin Shin
Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorZaifei Ma
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorMiao Liu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSang Wan Cho
Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493 Republic of Korea
Search for more papers by this authorYeonju Park
Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorYoung Mee Jung
Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorCorresponding Author
Hyunbok Lee
Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorCorresponding Author
Wenxu Liu
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Yao Liu
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorLei Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work
Search for more papers by this authorYuxing Wang
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work
Search for more papers by this authorJunjie Wen
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYifan Huang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJiaxin Gao
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYuxin Duan
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorSoohyung Park
Advanced Analysis Center, Korea Institute of Science and Technology, and Division of Nanoscience & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792 Republic of Korea
Search for more papers by this authorWoojin Shin
Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorZaifei Ma
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorMiao Liu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSang Wan Cho
Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493 Republic of Korea
Search for more papers by this authorYeonju Park
Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorYoung Mee Jung
Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorCorresponding Author
Hyunbok Lee
Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 Republic of Korea
Search for more papers by this authorCorresponding Author
Wenxu Liu
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Yao Liu
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorAbstract
Phosphonic acid (PA) self-assembled molecules have recently emerged as efficient hole-extraction layers (HELs) for organic solar cells (OSCs). However, the structural effects of PAs on their self-assembly behaviors on indium tin oxide (ITO) and thus photovoltaic performance remain obscure. Herein, we present a novel class of PAs, namely “non-fused ring dipodal phosphonic acids” (NFR-DPAs), featuring simple and malleable non-fused ring backbones and dipodal phosphonic acid anchoring groups. The efficacy of configurational isomerism in modulating the photoelectronic properties and switching molecular orientation of PAs atop electrodes results in distinct substrate surface energy and electronic characteristics. The NFR-DPA with linear (C2h symmetry) and brominated backbone exhibits favorable face-on orientation and enhanced work function modification capability compared to its angular (C2v symmetry) and non-brominated counterparts. This makes it versatile HELs in mitigating interfacial resistance for energy barrier-free hole collection, and affording optimal active layer morphology, which results in an impressive efficiency of 19.11 % with a low voltage loss of 0.52 V for binary OSC devices and an excellent efficiency of 19.66 % for ternary OSC devices. This study presents a new dimension to design PA-based HELs for high-performance OSCs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408960-sup-0001-misc_information.pdf6.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Cheng, G. Li, X. W. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131–142.
- 2G. Y. Zhang, J. B. Zhao, P. C. Y. Chow, K. Jiang, J. Q. Zhang, Z. L. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447–3507.
- 3W. Liu, Y. Duan, Z. Zhang, J. Gao, S. Li, Z. Fink, X. Wu, Z. Ma, A. Saeki, T. P. Russell, Y. Liu, ACS Energy Lett. 2023, 8, 4514–4523.
- 4Z. Han, C. Zhang, T. He, J. Gao, Y. Hou, X. Gu, J. Lv, N. Yu, J. Qiao, S. Wang, C. Li, J. Zhang, Z. Wei, Q. Peng, Z. Tang, X. Hao, G. Long, Y. Cai, X. Zhang, H. Huang, Angew. Chem. Int. Ed. 2024, 63, e202318143.
- 5L. J. Zuo, S. B. Jo, Y. K. Li, Y. H. Meng, R. J. Stoddard, Y. Liu, F. Lin, X. L. Shi, F. Liu, H. W. Hillhouse, D. S. Ginger, H. Z. Chen, A. K. Y. Jen, Nat. Nanotechnol. 2022, 17, 53–60.
- 6G. Zhang, F. R. Lin, F. Qi, T. Heumueller, A. Distler, H.-J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K. Y. Jen, H.-L. Yip, Chem. Rev. 2022, 122, 14180–14274.
- 7H. Zhuo, X. Li, J. Zhang, S. Qin, J. Guo, R. Zhou, X. Jiang, X. Wu, Z. Chen, J. Li, L. Meng, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202303551.
- 8L. Ma, S. Zhang, J. Ren, G. Wang, J. Li, Z. Chen, H. Yao, J. Hou, Angew. Chem. Int. Ed. 2023, 62, e202214088.
- 9T. Chen, S. Li, Y. Li, Z. Chen, H. Wu, Y. Lin, Y. Gao, M. Wang, G. Ding, J. Min, Z. Ma, H. Zhu, L. Zuo, H. Chen, Adv. Mater. 2023, 35, 2300400.
- 10H. Meng, W. Jing, X. Xu, L. Yu, Q. Peng, Angew. Chem. Int. Ed. 2023, 62, e202301958.
- 11Z. You, Y. Song, W. Liu, W. Wang, C. Zhu, Y. Duan, Y. Liu, Angew. Chem. Int. Ed. 2023, 62, e202302538.
- 12B. Kan, H. R. Feng, X. J. Wan, F. Liu, X. Ke, Y. B. Wang, Y. C. Wang, H. T. Zhang, C. X. Li, J. H. Hou, Y. S. Chen, J. Am. Chem. Soc. 2017, 139, 4929–4934.
- 13X. Duan, W. Song, J. Qiao, X. Li, Y. Cai, H. Wu, J. Zhang, X. Hao, Z. Tang, Z. Ge, F. Huang, Y. Sun, Energy Environ. Sci. 2022, 15, 1563–1572.
- 14H. Tang, Y. Bai, H. Zhao, X. Qin, Z. Hu, C. Zhou, F. Huang, Y. Cao, Adv. Mater. 2023, 35, 2212236.
- 15Y. Liu, T. P. Russell, Acc. Mater. Res. 2022, 55, 1097–1108.
- 16X. Dong, X. Zhou, Y. Liu, S. Xiong, J. Cheng, Y. Jiang, Y. Zhou, Energy Environ. Sci. 2023, 16, 1511–1519.
- 17C. Zhu, J. Tian, W. Liu, Y. Duan, Y. Song, Z. You, X. Wang, N. Li, X. Zhan, T. P. Russell, Y. Liu, ACS Energy Lett. 2023, 8, 2689–2698.
- 18Z. A. Page, Y. Liu, V. V. Duzhko, T. P. Russell, T. Emrick, Science 2014, 346, 441–444.
- 19W. Wang, Z. Lin, S. Gao, W. Zhu, X. Song, W. Tang, Adv. Funct. Mater. 2023, 33, 2303653.
- 20P. E. Laibinis, G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 1990–1995.
- 21L. Huang, L. Chen, P. Huang, F. Wu, L. Tan, S. Xiao, W. Zhong, L. Sun, Y. Chen, Adv. Mater. 2016, 28, 4852–4860.
- 22N. W. Polaske, H. C. Lin, A. Tang, M. Mayukh, L. E. Oquendo, J. T. Green, E. L. Ratcliff, N. R. Armstrong, S. S. Saavedra, D. V. McGrath, Langmuir 2011, 27, 14900–14909.
- 23H. Bin, K. Datta, J. Wang, T. P. A. van der Pol, J. Li, M. M. Wienk, R. A. J. Janssen, ACS Appl. Mater. Interfaces 2022, 14, 16497–16504.
- 24A. Ullah, K. H. Park, Y. Lee, S. Park, A. B. Faheem, H. D. Nguyen, Y. Siddique, K. K. Lee, Y. Jo, C. H. Han, S. Ahn, I. Jeong, S. Cho, B. Kim, Y. S. Park, S. Hong, Adv. Funct. Mater. 2022, 32, 2208793.
- 25L. E. Oquendo, R. Ehamparam, N. R. Armstrong, S. S. Saavedra, D. V. McGrath, J. Phys. Chem. C 2019, 123, 6970–6980.
- 26T. Lee, Y. Eom, C. E. Song, I. H. Jung, D. Kim, S. K. Lee, W. S. Shin, E. Lim, Adv. Energy Mater. 2019, 9, 1804021.
- 27X. Zhang, X. Gu, H. Huang, Acc. Chem. Res. 2024, 57, 981–991.
- 28Q. Bai, Q. Liang, H. Li, H. Sun, X. Guo, L. Niu, Aggregate 2022, 3, e281.
- 29Z.-P. Yu, Z.-X. Liu, F.-X. Chen, R. Qin, T.-K. Lau, J.-L. Yin, X. Kong, X. Lu, M. Shi, C.-Z. Li, H. Chen, Nat. Commun. 2019, 10, 2152.
- 30H. Lu, X. Wang, S. Li, D. Li, N. Yu, Z. Tang, Y. Liu, X. Xu, Z. Bo, Chem. Eng. J. 2022, 435, 134987.
- 31X. Ding, X. Chen, Y. Xu, Z. Ni, T. He, H. Qiu, C. Li, Q. Zhang, Chem. Eng. J. 2022, 429, 132298.
- 32N. Yang, Y. Cui, T. Zhang, C. An, Z. Chen, Y. Xiao, Y. Yu, Y. Wang, X.-T. Hao, J. Hou, J. Am. Chem. Soc. 2024, 146, 9205–9215.
- 33L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C. C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656–663.
- 34X. Li, F. Pan, C. Sun, M. Zhang, Z. Wang, J. Du, J. Wang, M. Xiao, L. Xue, Z. G. Zhang, C. Zhang, F. Liu, Y. Li, Nat. Commun. 2019, 10, 519.
- 35K. Eom, U. Kwon, S. S. Kalanur, H. J. Park, H. Seo, J. Mater. Chem. A 2017, 5, 2563–2571.
- 36R. Geng, P. Liu, R. Pan, H. Xu, S. Gao, Z. Zhang, T. Su, H. Wu, W. Zhu, X. Song, Chem. Eng. J. 2023, 454, 140138.
- 37P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- 38M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT 2016.
- 39F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
- 40Y. Lin, Y. Firdaus, F. H. Isikgor, M. I. Nugraha, E. Yengel, G. T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C. T. Howells, O. M. Bakr, I. McCulloch, S. D. Wolf, L. Tsetseris, T. D. Anthopoulos, ACS Energy Lett. 2020, 5, 2935–2944.
- 41M. Gliboff, H. Li, K. M. Knesting, A. J. Giordano, D. Nordlund, G. T. Seidler, J.-L. Brédas, S. R. Marder, D. S. Ginger, J. Phys. Chem. C 2013, 117, 15139–15147.
- 42S. A. Paniagua, P. J. Hotchkiss, S. C. Jones, S. R. Marder, A. Mudalige, F. S. Marrikar, J. E. Pemberton, N. R. Armstrong, J. Phys. Chem. C 2008, 112, 7809–7817.
- 43O. Acton, M. Dubey, T. Weidner, K. M. O'Malley, T. W. Kim, G. G. Ting, D. Hutchins, J. E. Baio, T. C. Lovejoy, A. H. Gage, D. G. Castner, H. Ma, A. K. Y. Jen, Adv. Funct. Mater. 2011, 21, 1476–1488.
- 44D. Liu, Z. He, Y. Su, Y. Diao, S. C. B. Mannsfeld, Z. Bao, J. Xu, Q. Miao, Adv. Mater. 2014, 26, 7190–7196.
- 45Y. Lin, Y. Zhang, J. Zhang, M. Marcinskas, T. Malinauskas, A. Magomedov, M. I. Nugraha, D. Kaltsas, D. R. Naphade, G. T. Harrison, A. El-Labban, S. Barlow, S. De Wolf, E. Wang, I. McCulloch, L. Tsetseris, V. Getautis, S. R. Marder, T. D. Anthopoulos, Adv. Energy Mater. 2022, 12, 2202503.
- 46H.-C. Lin, G. A. MacDonald, Y. Shi, N. W. Polaske, D. V. McGrath, S. R. Marder, N. R. Armstrong, E. L. Ratcliff, S. S. Saavedra, J. Phys. Chem. C 2015, 119, 10304–10313.
- 47D. Pattadar, L. Zheng, A. J. Robb, D. Beery, W. Yang, K. Hanson, S. S. Saavedra, J. Phys. Chem. C 2023, 127, 2705–2715.
- 48G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 49J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 50D. K. Owens, R. C. Wendt, J. Appl. Polym. 1969, 13, 1741–1747.
- 51Q. Liao, Q. Kang, B. Xu, J. Hou, JACS Au 2022, 2, 1918–1928.
- 52C. Körber, V. Krishnakumar, A. Klein, G. Panaccione, P. Torelli, A. Walsh, J. L. F. Da Silva, S. H. Wei, R. G. Egdell, D. J. Payne, Phys. Rev. B 2010, 81, 165207.
- 53C. J. Powell, A. Jablonski, NIST Electron Inelastic-Mean-Free-Path Database, Version 1.2, SRD 71, National Institute of Standards and Technology, Gaithersburg, MD 2010.
- 54S. Guan, Y. Li, C. Xu, N. Yin, C. Xu, C. Wang, M. Wang, Y. Xu, Q. Chen, D. Wang, L. Zuo, H. Chen, Adv. Mater. 2024, 36, 2400342.
- 55D. M. Spori, N. V. Venkataraman, S. G. P. Tosatti, F. Durmaz, N. D. Spencer, S. Zürcher, Langmuir 2007, 23, 8053–8060.
- 56E. L. Hanson, J. Guo, N. Koch, J. Schwartz, S. L. Bernasek, J. Am. Chem. Soc. 2005, 127, 10058–10062.
- 57C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605–613.
- 58R. Yang, J. Tian, W. Liu, Y. Wang, Z. Chen, T. P. Russell, Y. Liu, Chem. Mater. 2022, 34, 7293–7301.
- 59Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 2020, 65, 272–275.
- 60Y. Shen, A. R. Hosseini, M. H. Wong, G. G. Malliaras, ChemPhysChem 2004, 5, 16–25.
- 61U. Rau, T. Kirchartz, Nat. Mater. 2014, 13, 103–104.
- 62K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, Nat. Mater. 2009, 8, 904–909.
- 63H. Liu, M. Li, H. Wu, J. Wang, Z. Ma, Z. Tang, J. Mater. Chem. A 2021, 9, 19770–19777.
- 64U. Rau, Phys. Rev. B 2007, 76, 085303.
- 65K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, Phys. Rev. B 2010, 81, 125204.
- 66Y. Shi, Y. Chang, K. Lu, Z. Chen, J. Zhang, Y. Yan, D. Qiu, Y. Liu, M. A. Adil, W. Ma, X. Hao, L. Zhu, Z. Wei, Nat. Commun. 2022, 13, 3256.
- 67Y. Jiang, Y. Li, F. Liu, W. Wang, W. Su, W. Liu, S. Liu, W. Zhang, J. Hou, S. Xu, Y. Yi, X. Zhu, Nat. Commun. 2023, 14, 5079.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.