Polymeric Prodrugs using Dynamic Covalent Chemistry for Prolonged Local Anesthesia
Dr. Tianrui Xue
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDr. Yang Li
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDr. Matthew Torre
Department of Pathology Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorRachelle Shao
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDr. Yiyuan Han
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorShuanglong Chen
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDaniel Lee
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorCorresponding Author
Prof. Dr. Daniel S. Kohane
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDr. Tianrui Xue
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDr. Yang Li
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDr. Matthew Torre
Department of Pathology Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorRachelle Shao
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDr. Yiyuan Han
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorShuanglong Chen
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorDaniel Lee
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorCorresponding Author
Prof. Dr. Daniel S. Kohane
Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115 United States
Search for more papers by this authorAbstract
Depot-type drug delivery systems are designed to deliver drugs at an effective rate over an extended period. Minimizing initial “burst” can also be important, especially with drugs causing systemic toxicity. Both goals are challenging with small hydrophilic molecules. The delivery of molecules such as the ultrapotent local anesthetic tetrodotoxin (TTX) exemplifies both challenges. Toxicity can be mitigated by conjugating TTX to polymers with ester bonds, but the slow ester hydrolysis can result in subtherapeutic TTX release. Here, we developed a prodrug strategy, based on dynamic covalent chemistry utilizing a reversible reaction between the diol TTX and phenylboronic acids. These polymeric prodrugs exhibited TTX encapsulation efficiencies exceeding 90 % and the resulting polymeric nanoparticles showed a range of TTX release rates. In vivo injection of the TTX polymeric prodrugs at the sciatic nerve reduced TTX systemic toxicity and produced nerve block lasting 9.7±2.0 h, in comparison to 1.6±0.6 h from free TTX. This approach could also be used to co-deliver the diol dexamethasone, which prolonged nerve block to 21.8±5.1 h. This work emphasized the usefulness of dynamic covalent chemistry for depot-type drug delivery systems with slow and effective drug release kinetics.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406158-sup-0001-misc_information.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Huang, C. S. Brazel, J. Controlled Release 2001, 73, 121–136.
- 2J. V. Natarajan, C. Nugraha, X. W. Ng, S. Venkatraman, J. Controlled Release 2014, 193, 122–138.
- 3A. Hardenia, N. Maheshwari, S. S. Hardenia, S. K. Dwivedi, R. Maheshwari, R. K. Tekade, in Basic Fundamentals of Drug Delivery (Ed.: R. K. Tekade), Academic Press 2019, pp. 1–28.
10.1016/B978-0-12-817909-3.00001-7 Google Scholar
- 4R. Langer, J. Folkman, Nature 1976, 263, 797–800.
- 5A. Hoffman, Adv. Drug Delivery Rev. 1998, 33, 185–199.
- 6S. Vrignaud, J.-P. Benoit, P. Saulnier, Biomaterials 2011, 32, 8593–8604.
- 7Q. Li, X. Li, C. Zhao, Front. Bioeng. Biotechnol. 2020, 8.
- 8C. M. Santamaria, A. Woodruff, R. Yang, D. S. Kohane, Mater. Today 2017, 20, 22–31.
- 9P. F. White, Anesth. Analg. 2005, 101.
- 10D. S. Kohane, J. Yieh, N. T. Lu, R. Langer, G. R. Strichartz, C. B. Berde, Anesthesiology 1998, 89, 119–131.
- 11D. S. Kohane, S. E. Smith, D. N. Louis, G. Colombo, P. Ghoroghchian, N. G. M. Hunfeld, C. B. Berde, R. Langer, Pain 2003, 104.
- 12M. Makarova, L. Rycek, J. Hajicek, D. Baidilov, T. Hudlicky, Angew. Chem. Int. Ed. 2019, 58, 18338–18387.
- 13H. Epstein-Barash, I. Shichor, A. H. Kwon, S. Hall, M. W. Lawlor, R. Langer, D. S. Kohane, Proc. Natl. Acad. Sci. USA 2009, 106, 7125–7130.
- 14C. Zhao, A. Liu, C. M. Santamaria, A. Shomorony, T. Ji, T. Wei, A. Gordon, H. Elofsson, M. Mehta, R. Yang, D. S. Kohane, Nat. Commun. 2019, 10, 2566.
- 15T. Ji, Y. Li, X. Deng, A. Y. Rwei, A. Offen, S. Hall, W. Zhang, C. Zhao, M. Mehta, D. S. Kohane, Nat. Biomed. Eng. 2021, 5, 1099–1109.
- 16D. Wang, Y. Li, X. Deng, M. Torre, Z. Zhang, X. Li, W. Zhang, K. Cullion, D. S. Kohane, C. B. Weldon, Nat. Commun. 2023, 14, 2444.
- 17R. Tong, J. Cheng, Angew. Chem. Int. Ed. 2008, 47, 4830–4834.
- 18A. G. Cheetham, R. W. Chakroun, W. Ma, H. Cui, Chem. Soc. Rev. 2017, 46, 6638–6663.
- 19I. Ekladious, Y. L. Colson, M. W. Grinstaff, Nat. Rev. Drug Discovery 2019, 18, 273–294.
- 20S.-T. Chien, I. T. Suydam, K. A. Woodrow, Adv. Drug Delivery Rev. 2023, 198, 114860.
- 21J. Khandare, T. Minko, Prog. Polym. Sci. 2006, 31, 359–397.
- 22E. J. Simons, E. Bellas, M. W. Lawlor, D. S. Kohane, Mol. Pharm. 2009, 6, 265–273.
- 23C. M. Santamaria, C. Zhan, J. B. McAlvin, D. Zurakowski, D. S. Kohane, Anesth. Analg. 2017, 124.
- 24T. Kobayashi, Y. Nagashima, B. Kimura, T. Fujii, Shokuhin Eiseigaku Zasshi 2004, 45, 76–80.
- 25F. Lu, H. Zhang, W. Pan, N. Li, B. Tang, Chem. Commun. 2021, 57, 7067–7082.
- 26A. N. Prossnitz, S. H. Pun, ACS Macro Lett. 2022, 11, 276–283.
- 27A. P. Bapat, D. Roy, J. G. Ray, D. A. Savin, B. S. Sumerlin, J. Am. Chem. Soc. 2011, 133, 19832–19838.
- 28Y. Li, W. Xiao, K. Xiao, L. Berti, J. Luo, H. P. Tseng, G. Fung, K. S. Lam, Angew. Chem. Int. Ed. 2012, 51, 2864–2869.
- 29O. R. Cromwell, J. Chung, Z. Guan, J. Am. Chem. Soc. 2015, 137, 6492–6495.
- 30W. L. A. Brooks, C. C. Deng, B. S. Sumerlin, ACS Omega 2018, 3, 17863–17870.
- 31Y. Liu, Y. Wang, Y. Yao, J. Zhang, W. Liu, K. Ji, X. Wei, Y. Wang, X. Liu, S. Zhang, J. Wang, Z. Gu, Angew. Chem. Int. Ed. 2023, 62, e202303097.
- 32K. T. Kim, J. J. L. M. Cornelissen, R. J. M. Nolte, J. C. M. v Hest, J. Am. Chem. Soc. 2009, 131, 13908–13909.
- 33J. Wang, Z. Wang, J. Yu, A. R. Kahkoska, J. B. Buse, Z. Gu, Adv. Mater. 2020, 32, 1902004.
- 34M. Naito, T. Ishii, A. Matsumoto, K. Miyata, Y. Miyahara, K. Kataoka, Angew. Chem. Int. Ed. 2012, 51, 10751–10755.
- 35S. Biswas, K. Kinbara, T. Niwa, H. Taguchi, N. Ishii, S. Watanabe, K. Miyata, K. Kataoka, T. Aida, Nat. Chem. 2013, 5, 613–620.
- 36J. Axthelm, S. H. C. Askes, M. Elstner, U. R. G. H. Görls, P. Bellstedt, A. Schiller, J. Am. Chem. Soc. 2017, 139, 11413–11420.
- 37D. Roy, J. N. Cambre, B. S. Sumerlin, Chem. Commun. 2008, 2477–2479.
- 38J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559–5562.
- 39D. Roy, B. S. Sumerlin, ACS Macro Lett. 2012, 1, 529–532.
- 40Y. Li, T. Ji, M. Torre, R. Shao, Y. Zheng, D. Wang, X. Li, A. Liu, W. Zhang, X. Deng, R. Yan, D. S. Kohane, Nat. Commun. 2023, 14, 6659.
- 41C. Zhao, J. Chen, J. Ye, Z. Li, L. Su, J. Wang, Y. Zhang, J. Chen, H. Yang, J. Shi, J. Song, Angew. Chem. Int. Ed. 2021, 60, 14458–14466.
- 42J. Curley, J. Castillo, J. Hotz, M. Uezono, S. Hernandez, J.-O. Lim, J. Tigner, M. Chasin, R. Langer, C. Berde, Anesthesiology 1996, 84, 1401–1410.
- 43R. F. Padera, J. Y. Tse, E. Bellas, D. S. Kohane, Muscle Nerve 2006, 34, 747–753.
- 44A. Slotkin Theodore, A. MacKillop Emiko, T. Ryde Ian, A. Tate Charlotte, J. Seidler Frederic, Environ. Health Perspect. 2007, 115, 93–101.
- 45B. Lomonte, Y. Angulo, S. Rufini, W. Cho, J. R. Giglio, M. Ohno, J. J. Daniele, P. Geoghegan, J. M. Gutiérrez, Toxicon 1999, 37, 145–158.
- 46C. S. Barnet, D. N. Louis, D. S. Kohane, Anesth. Analg. 2005, 101.
- 47W. Choi, G. Aizik, C. A. Ostertag-Hill, D. S. Kohane, Biomaterials 2024, 306, 122494.
- 48J. B. McAlvin, R. F. Padera, S. A. Shankarappa, G. Reznor, A. H. Kwon, H. H. Chiang, J. Yang, D. S. Kohane, Biomaterials 2014, 35, 4557–4564.
- 49A. D. Turner, K. J. Dean, M. Dhanji-Rapkova, S. Dall'Ara, F. Pino, C. McVey, S. Haughey, N. Logan, C. Elliott, A. Gago-Martinez, J. M. Leao, J. Giraldez, R. Gibbs, K. Thomas, R. Perez-Calderon, D. Faulkner, H. McEneny, V. Savar, D. Reveillon, P. Hess, F. Arevalo, J. P. Lamas, E. Cagide, M. Alvarez, A. Antelo, M. D. Klijnstra, M. Oplatowska-Stachowiak, T. Kleintjens, N. Sajic, M. J. Boundy, B. H. Maskrey, D. T. Harwood, J. M. González Jartín, A. Alfonso, L. Botana, J. AOAC Int. 2023, 106, 356–369.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.