Manipulating Atomic-Coupling in Dual-Cavity Boride Nanoreactor to Achieve Hierarchical Catalytic Engineering for Sulfur Cathode
Dr. Bin Wang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorLu Wang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorMuhammad Mamoor
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorDr. Chang Wang
School of Physics, Shandong University, Jinan, 250100 China
Search for more papers by this authorDr. Yanjun Zhai
Liaocheng University, Liaocheng, 252000 P. R. China
Search for more papers by this authorFengbo Wang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorZhongxin Jing
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorGuangmeng Qu
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorYueyue Kong
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorCorresponding Author
Prof. Liqiang Xu
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Liaocheng University, Liaocheng, 252000 P. R. China
Search for more papers by this authorDr. Bin Wang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorLu Wang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorMuhammad Mamoor
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorDr. Chang Wang
School of Physics, Shandong University, Jinan, 250100 China
Search for more papers by this authorDr. Yanjun Zhai
Liaocheng University, Liaocheng, 252000 P. R. China
Search for more papers by this authorFengbo Wang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorZhongxin Jing
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorGuangmeng Qu
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorYueyue Kong
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Search for more papers by this authorCorresponding Author
Prof. Liqiang Xu
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
Liaocheng University, Liaocheng, 252000 P. R. China
Search for more papers by this authorAbstract
The catalytic process of Li2S formation is considered a key pathway to enhance the kinetics of lithium-sulfur batteries. Due to the system‘s complexity, the catalytic behavior is uncertain, posing significant challenges for predicting activity. Herein, we report a novel cascaded dual-cavity nanoreactor (NiCo−B) by controlling reaction kinetics, providing an opportunity for achieving hierarchical catalytic behavior. Through experimental and theoretical analysis, the multilevel structure can effectively suppress polysulfides dissolution and accelerate sulfur conversion. Furthermore, we differentiate the adsorption (B−S) and catalytic effect (Co−S) in NiCo−B, avoiding catalyst deactivation caused by excessive adsorption. As a result, the as-prepared battery displays high reversible capacity, even with sulfur loading of 13.2 mg cm−2 (E/S=4 μl mg−1), the areal capacity can reach 18.7 mAh cm−2.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406065-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
ange202406065-sup-0001-Supporting_Information_for_Accepted_Article.mp48.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Zhou, Z. H. Li, X. Xu, L. Q. Mai, Natl. Sci. Rev. 2021, 8, nwab055.
- 2Z. Li, L. P. Hou, N. Yao, X. Y. Li, Z. X. Chen, X. Chen, X. Q. Zhang, B. Q. Li, Q. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202309968.
- 3S. Y. Zhou, J. Shi, S. G. Liu, G. Li, F. Pei, Y. H. Chen, J. X. Deng, Q. Z. Zheng, J. Y. Li, C. Zhao, I. Hwang, C. J. Sun, Y. Z. Liu, Y. Deng, L. Huang, Y. Qiao, G. L. Xu, J. F. Chen, K. Amine, S. G. Sun, H. G. Liao, Nature 2023, 621, 75–81.
- 4X. Q. Qi, F. Y. Yang, P. F. Sang, Z. L. Zhu, X. Y. Jin, Y. J. Pan, J. Ji, R. N. Jiang, H. R. Du, Y. S. Ji, Y. Z. Fu, L. Qie, Y. H. Huang, Angew. Chem. Int. Ed. 2023, 62, e202218803.
- 5J. H. Zheng, G. N. Guo, H. W. Li, L. Wang, B. W. Wang, H. J. Yu, Y. C. Yan, D. Yang, A. G. Dong, ACS Energy Lett. 2017, 2, 1105–1114.
- 6H. D. Yuan, T. F. Liu, Y. J. Liu, J. W. Nai, Y. Wang, W. K. Zhang, X. Y. Tao, Chem. Sci. 2019, 10, 7484.
- 7H. T. Li, P. Shi, L. Wang, T. R. Yan, T. Guo, X. Xia, C. Chen, J. Mao, D. Sun, L. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202216286.
- 8L. B. Ma, Y. R. Wang, Z. W. Wang, J. L. Wang, Y. W. Cheng, J. X. Wu, B. Peng, J. Xu, W. Zhang, Z. Jin, ACS Nano 2023, 17, 11527–11536.
- 9Y. Y. Kong, L. Wang, M. Mamoor, B. Wang, G. M. Qu, Z. X. Jing, Y. P. Pang, F. B. Wang, X. F. Yang, D. D. Wang, L. Q. Xu, Adv. Mater. 2023, 2310143.
- 10H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2016, 55, 12990–12995.
- 11Y. X. Yang, Y. R. Zhong, Q. W. Shi, Z. H. Wang, K. N. Sun, H. L. Wang, Angew. Chem. Int. Ed. 2018, 57, 15549–15552.
- 12D. Zhang, Y. X. Luo, J. X. Liu, Y. Dong, C. Xiang, C. K. Zhao, H. B. Shu, J. H. Hou, X. Y. Wang, M. F. Chen, ACS Appl. Mater. Interfaces 2022, 14, 23546–23557.
- 13B. S. Guo, Q. R. Ma, L. C. Zhang, T. T. Yang, D. Y. Liu, X. Zhang, Y. R. Qi, S. J. Bao, M. W. Xu, Chem. Eng. J. 2021, 413, 127521.
- 14Z. Q. Ye, Y. Jiang, L. Li, F. Wu, R. J. Chen, Adv. Mater. 2022, 34, 2109552.
- 15Z. K. Wang, H. Q. Ji, L. Z. Zhou, X. W. Shen, L. H. Gao, J. Liu, T. Z. Yang, T. Qian, C. L. Yan, ACS Nano 2021, 15, 13847–13856.
- 16H. Y. Han, R. H. Gao, T. S. Wang, S. Y. Tao, Y. Y. Jia, Z. J. Lao, M. T. Zhang, J. Q. Zhou, C. Li, Z. H. Piao, X. Zhang, G. M. Zhou, Nat. Catal. 2023, 6, 1073–1086.
- 17Z. H. Shen, X. Jin, J. M. Tian, M. Li , Y. F. Yuan , S. Zhang, S. S. Fang, X. Fan, W. G. Xu, H. Lu, J. Lu , H. G. Zhang, Nat. Catal. 2022, 5, 555–563.
- 18B. Wang, L. Wang, D. Ding, Y. J. Zhai, F. B. Wang, Z. X. Jing, X. F. Yang, Y. Y. Kong, Y. T. Qian, L. Q. Xu, Adv. Mater. 2022, 34, 2204403.
- 19W. Zhang, H. Pan, N. Han, S. H. Feng, X. Zhang, W. Guo, P. P. Tan, S. J. Xie, Z. Y. Zhou, Q. R. Ma, X. L. Guo, A. Vlad, M. Wübbenhorst, J. S. Luo, J. Fransaer, Adv. Energy Mater. 2023, 2301551.
- 20Y. H. Yao, Z. Y. Zhang, L. F. Jiao, Energy Environ. Mater.r. 2022, 5, 470–485.
- 21Q. Pang, C. Y. Kwok, D. Kundu, X. Liang, L. F. Nazar, Joule 2019, 3, 136–148.
- 22J. He, A. Bhargav, A. Manthiram, Adv. Mater. 2020, 32, 2004741.
- 23B. Wang, L. Wang, B. Zhang, S. Zeng, F. Tian, J. Dou, Y. Qian, L. Xu, ACS Nano 2022, 16, 4947–4960.
- 24Z. Li, P. Li, X. Meng, Z. Lin, R. Wang, Adv. Mater. 2021, 33, 2102338.
- 25H. Y. Li, G. X. Chen, K. L. Zhang, L. B. Wang, G. R. Li, Adv. Sci. 2023, 10, 2303830.
- 26T. Wu, J. Qi, M. Xu, D. Zhou, Z. Xiao, ACS Nano 2020, 14, 15011–15022.
- 27B. Wang, L. Wang, B. Zhang, Z. Kong, S. Zeng, M. Zhao, Y. Qian, L. Xu, Energy Storage Mater. 2022, 45, 130–141.
- 28B. Wang, L. Wang, Y. Y. Kong, F. B. Wang, Z. X. Jing, X. F. Yang, Y. T. Qian, M. Chen, L. Q. Xu, Adv. Energy Mater. 2023, 13, 2300590.
- 29S. Jin, M. Kevin, G. Hubert, J. Goodenough, S. Yang, Science 2011, 334, 1383–1385.
- 30Y. Y. Dong, D. Cai, T. T. Li, S. Yang, X. M. Zhou, Y. J. Ge, H. Tang, H. G. Nie, Z. Yang, ACS Nano 2022, 16, 6414–6425.
- 31R. Xiao, T. Yu, S. Yang, X. Y. Zhang, T. Z. Hu, R. G. Xu, Z. Y. Qu, G. J. Hu, Z. H. Sun, F. Li, Adv. Funct. Mater. 2024, 34, 2308210.
- 32S. L. Zhang, X. Ao, J. Huang, B. Wei, Y. L. Zhai, D. Zhai, W. Q. Deng, C. L. Su, D. S. Wang, Y. D. Li, Nano Lett. 2021, 21, 9691–9698.
- 33H. J. Yang, Y. Qiao, Z. Chang, P. He, H. S. Zhou, Angew. Chem. Int. Ed. 2021, 60, 17726–17734.
- 34D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang, C. Zhao, Y. Zhang, X. Xu, L. Fan, N. Zhang, ACS Nano 2021, 15, 16515–16524.
- 35W. X. Hua, H. Li, C. Pei, J. Y. Xia, Y. F. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. S. Zhang, S. Z. Qiao, Y. Wan, Q. H. Yang, Adv. Mater. 2021, 33, 2101006.
- 36H. F. Xu, Q. B. Jiang, K. S. Hui, S. Wang, L. W. Liu, T. Y. Chen, Y. S. Zheng, W. F. Ip, D. A. Dinh, C. Y. Zha, Z. Lin, K. N. Hui, ACS Nano 2024, 18, 8839–8852.
- 37C. C. Li, S. Y. Qi, L. Zhu, Y. Zhao, R. Z. Huang, Y. Y. He, W. N. Ge, X. B. Liu, M. W. Zhao, L. Q. Xu, Y. T. Qian, Nano Today 2021, 40, 101246.
- 38W. L. Liu, M. Lei, X. J. Zhou, C. L. Li, Energy Storage Mater. 2023, 58, 74–84.
- 39C. Yuan, X. C. Song, P. Zeng, G. L. Liu, S. H. Zhou, G. Zhao, H. T. Li, T. R. Yan, J. Mao, H. Yang, T. Cheng, J. P. Wu, L. Zhang, Nano Energy 2023, 110, 108353.
- 40R. Wang, J. L. Qin, F. Pei, Z. Z. Li, P. Xiao, Y. H. Huang, L. X. Yuan, D. L. Wang, Adv. Funct. Mater. 2023, 33, 2305991.
- 41Z. Q. Zhao, Y. K. Pan, S. Yi, Z. Su, H. L. Chen, Y. N. Huang, B. Niu, D. H. Long, Y. Y. Zhang, Adv. Mater. 2023, 2310052.
- 42F. Ma, Z. Chen, K. Srinivas, D. W. Liu, Z. H. Zhang, Y. Wu, M. Q. Zhu, Q. Wu, Y. F. Chen, Chem. Eng. J. 2023, 459, 141526.
- 43M. H. Cheng, Z. Y. Xing, R. Yan, Z. Y. Zhao, T. Ma, M. Zhou, X. K. Liu, S. Li, C. Cheng, InfoMat 2023, 5, e12387.
- 44Y. Ouyang, W. Zong, X. B. Zhu, L. L. Mo, G. J. Chao, W. Fan, F. L. Lai, Y. E. Miao, T. X. Liu, Y. Yu, Adv. Sci. 2022, 9, 2203181.
- 45Y. Zhang, C. Kang, W. Zhao, Y. J. Song, J. M. Zhu, H. Huo, Y. L. Ma, C. Y. Du, P. J. Zuo, S. F. Lou, G. P. Yin, J. Am. Chem. Soc. 2023, 145, 1728–1739.
- 46Y. M. Zhang, W. Q. Zheng, H. J. Wu, R. Zhu, Y. H. Wang, M. Wang, T. Ma, C. Cheng, Z. Y. Zeng, S. Li, SusMat 2024, 4, 106–115.
- 47J. N. Feng, T. Liu, H. J. Li, Y. S. Hu, H. C. Mao, L. M. Suo, J. Am. Chem. Soc. 2024, 146, 3755–3763.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.