Acetal-thiol Click-like Reaction: Facile and Efficient Synthesis of Dynamic Dithioacetals and Recyclable Polydithioacetals
Shuai Du
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P. R. China
Search for more papers by this authorShuaiqi Yang
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P. R. China
Search for more papers by this authorBinbo Wang
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 P. R. China
Search for more papers by this authorPengyun Li
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorProf. Dr. Jin Zhu
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Songqi Ma
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P. R. China
Search for more papers by this authorShuai Du
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P. R. China
Search for more papers by this authorShuaiqi Yang
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P. R. China
Search for more papers by this authorBinbo Wang
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 P. R. China
Search for more papers by this authorPengyun Li
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
Search for more papers by this authorProf. Dr. Jin Zhu
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Songqi Ma
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122 P. R. China
Search for more papers by this authorAbstract
Dithioacetals are heavily used in organic, material and medical chemistries, and exhibit huge potential to synthesize degradable or recyclable polymers. However, the current synthetic approaches of dithioacetals and polydithioacetals are overwhelmingly dependent on external catalysts and organic solvents. Herein, we disclose a catalyst- and solvent-free acetal-thiol click-like reaction for synthesizing dithioacetals and polydithioacetals. High conversion, higher than acid catalytic acetal-thiol reaction, can be achieved. High universality was confirmed by monitoring the reactions of linear and cyclic acetals (including renewable bio-sourced furan-acetal) with aliphatic and aromatic thiols, and the reaction mechanism of monomolecular nucleophilic substitution (SN1) and auto-protonation (activation) by thiol was clarified by combining experiments and density functional theory computation. Subsequently, we utilize this reaction to synthesize readily recyclable polydithioacetals. By simple heating and stirring, linear polydithioacetals with w of ~110 kDa were synthesized from acetal and dithiol, and depolymerization into macrocyclic dithioacetal and repolymerization into polydithioacetal can be achieved; through reactive extrusion, a semi-interpenetrating polymer dynamic network with excellent mechanical properties and continuous reprocessability was prepared from poly(vinyl butyral) and pentaerythritol tetrakis(3-mercaptopropionate). This green and high-efficient synthesis method for dithioacetals and polydithioacetals is beneficial to the sustainable development of chemistry.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202405653-sup-0001-misc_information.pdf6.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Science 2011, 334, 965–968;
- 1bJ. Qiu, S. Ma, S. Wang, Z. Tang, Q. Li, A. Tian, X. Xu, B. Wang, N. Lu, J. Zhu, Macromolecules 2021, 54, 703–712;
- 1cC. Xu, L. Wang, Y. Liu, H. Niu, Y. Shen, Z. Li, Macromolecules 2023, 56, 6117–6125.
- 2
- 2aM. Häußler, M. Eck, D. Rothauer, S. Mecking, Nature 2021, 590, 423–427;
- 2bC. Ye, V. S. D. Voet, R. Folkersma, K. Loos, Adv. Mater. 2021, 33, e2008460.
- 3
- 3aX. X. Chen, M. A. Dam, K. Ono, A. Mal, H. B. Shen, S. R. Nutt, K. Sheran, F. Wudl, Science 2002, 295, 1698–1702;
- 3bQ. Li, S. Ma, P. Li, B. Wang, H. Feng, N. Lu, S. Wang, Y. Liu, X. Xu, J. Zhu, Macromolecules 2021, 54, 1742–1753;
- 3cS. Wang, N. Wang, D. Kai, B. Li, J. Wu, J. C. C. Yeo, X. Xu, J. Zhu, X. J. Loh, N. Hadjichristidis, Z. Li, Nat. Commun. 2023, 14, 1182.
- 4
- 4aB. Qin, S. Liu, Z. Huang, L. Zeng, J.-F. Xu, X. Zhang, Nat. Commun. 2022, 13, 7595;
- 4bB. Qin, S. Liu, J. F. Xu, Angew. Chem. Int. Ed. 2023, 62, e202311856;
- 4cF. Van Lijsebetten, T. Maiheu, J. M. Winne, F. E. Du Prez, Adv. Mater. 2023, 35, 2300802.
- 5
- 5aY. Branson, S. Soeltl, C. Buchmann, R. Wei, L. Schaffert, C. P. S. Badenhorst, L. Reisky, G. Jaeger, U. T. Bornscheuer, Angew. Chem. Int. Ed. 2023, 62, e202216220;
- 5bS. Kim, K. Li, A. Alsbaiee, J. P. Brutman, W. R. Dichtel, Adv. Mater. 2023, 35, 2305387;
- 5cM. Bourguignon, B. Grignard, C. Detrembleur, J. Am. Chem. Soc. 2024, 146, 988–1000.
- 6
- 6aB. A. Abel, R. L. Snyder, G. W. Coates, Science 2021, 373, 783–789;
- 6bH. G. Hester, B. A. Abel, G. W. Coates, J. Am. Chem. Soc. 2023, 145, 8800–8804;
- 6cQ. Li, S. Ma, P. Li, B. Wang, Z. Yu, H. Feng, Y. Liu, J. Zhu, Macromolecules 2021, 54, 8423–8434;
- 6dQ. Li, S. Ma, S. Wang, Y. Liu, M. A. Taher, B. Wang, K. Huang, X. Xu, Y. Han, J. Zhu, Macromolecules 2020, 53, 1474–1485;
- 6eH. Qiu, Z. Yang, M. Köhler, J. Ling, F. H. Schacher, Macromolecules 2019, 52, 3359–3366.
- 7
- 7aH. Feng, S. Ma, X. Xu, Q. Li, B. Wang, N. Lu, P. Li, S. Wang, Z. Yu, J. Zhu, Green Chem. 2021, 23, 9061–9070;
- 7bY.-C. M. Wu, G. Chyr, H. Park, A. Makar-Limanov, Y. Shi, J. M. DeSimone, Z. Bao, Chem. Sci. 2023, 14, 12535–12540.
- 8
- 8aY. Jin, C. Hu, J. Wang, Y. Ding, J. Shi, Z. Wang, S. Xu, L. Yuan, Angew. Chem. Int. Ed. 2023, 62, e202305677;
- 8bL. S. Kariyawasam, J. Rolsma, Y. Yang, Angew. Chem. Int. Ed. 2023, 62, e202303039;
- 8cN. Van Herck, D. Maes, K. Unal, M. Guerre, J. M. Winne, F. E. Du Prez, Angew. Chem. Int. Ed. 2020, 59, 3609–3617.
- 9
- 9aW. Denissen, M. Droesbeke, R. Nicolaÿ, L. Leibler, J. M. Winne, F. E. Du Prez, Nat. Commun. 2017, 8, 14857;
- 9bW. Denissen, G. Rivero, R. Nicolaÿ, L. Leibler, J. M. Winne, F. E. Du Prez, Adv. Funct. Mater. 2015, 25, 2451–2457;
- 9cF. Van Lijsebetten, K. De Bruycker, J. M. Winne, F. E. Du Prez, ACS Macro Lett. 2022, 11, 919–924.
- 10
- 10aP. R. Christensen, A. M. Scheuermann, K. E. Loeffler, B. A. Helms, Nat. Chem. 2019, 11, 442–448;
- 10bA. R. Epstein, J. Demarteau, B. A. Helms, K. A. Persson, J. Am. Chem. Soc. 2023, 145, 8082–8089;
- 10cE. K. Neidhart, M. Hua, Z. Peng, L. T. Kearney, V. Bhat, F. Vashahi, E. J. Alexanian, S. S. Sheiko, C. Wang, B. A. Helms, J. Am. Chem. Soc. 2023, 145, 27450–27458.
- 11X. Xu, S. Ma, S. Wang, J. Wu, Q. Li, N. Lu, Y. Liu, J. Yang, J. Feng, J. Zhu, J. Mater. Chem. A 2020, 8, 11261–11274.
- 12
- 12aB. S. Wang, Q. Zhang, Z. Q. Wang, C. Y. Shi, X. Q. Gong, H. Tian, D. H. Qu, Angew. Chem. Int. Ed. 2023, 62, e202215329;
- 12bQ. Zhang, Y. Deng, C.-Y. Shi, B. L. Feringa, H. Tian, D.-H. Qu, Matter 2021, 4, 1352–1364;
- 12cS. Huang, Y. Shen, H. K. Bisoyi, Y. Tao, Z. Liu, M. Wang, H. Yang, Q. Li, J. Am. Chem. Soc. 2021, 143, 12543–12551;
- 12dQ. Zhang, D.-H. Qu, B. L. Feringa, H. Tian, J. Am. Chem. Soc. 2022, 144, 2022–2033;
- 12eY. Chen, N. Mielke, N. S. Purwanto, B. Chen, C. D. Malliakas, J. M. Torkelson, Macromolecules 2024, 57, 490–502.
- 13
- 13aH. Chen, Y. Hu, C. Luo, Z. Lei, S. Huang, J. Wu, Y. Jin, K. Yu, W. Zhang, J. Am. Chem. Soc. 2023, 145, 9112–9117;
- 13bF. Vidal, S. Smith, C. K. Williams, J. Am. Chem. Soc. 2023, 145, 13888–13900;
- 13cX. Zhang, S. Wang, Z. Jiang, Y. Li, X. Jing, J. Am. Chem. Soc. 2020, 142, 21852–21860.
- 14
- 14aP. Taynton, K. Yu, R. K. Shoemaker, Y. Jin, H. J. Qi, W. Zhang, Adv. Mater. 2014, 26, 3938–3942;
- 14bX. Lu, P. Xie, X. Li, T. Li, J. Sun, Angew. Chem. Int. Ed. 2024, e202316453.
- 15
- 15aJ. M. García, G. O. Jones, K. Virwani, B. D. McCloskey, D. J. Boday, G. M. ter Huurne, H. W. Horn, D. J. Coady, A. M. Bintaleb, A. M. S. Alabdulrahman, F. Alsewailem, H. A. A. Almegren, J. L. Hedrick, Science 2014, 344, 732–735;
- 15bF. Wei, J. Zhang, C. Wu, M. Luo, B. Ye, H. Zhang, J. Wang, M. Miao, T. Li, D. Zhang, Macromolecules 2023, 56, 5290–5305.
- 16
- 16aY. Nishimura, J. Chung, H. Muradyan, Z. Guan, J. Am. Chem. Soc. 2017, 139, 14881–14884;
- 16bC. A. Tretbar, J. A. Neal, Z. Guan, J. Am. Chem. Soc. 2019, 141, 16595–16599;
- 16cP. Shieh, W. Zhang, K. E. L. Husted, S. L. Kristufek, B. Xiong, D. J. Lundberg, J. Lem, D. Veysset, Y. Sun, K. A. Nelson, D. L. Plata, J. A. Johnson, Nature 2020, 583, 542–547.
- 17
- 17aJ. D. Feist, Y. Xia, J. Am. Chem. Soc. 2020, 142, 1186–1189;
- 17bW. J. Neary, T. A. Isais, J. G. Kennemur, J. Am. Chem. Soc. 2019, 141, 14220–14229;
- 17cD. Sathe, J. Zhou, H. Chen, H.-W. Su, W. Xie, T.-G. Hsu, B. R. Schrage, T. Smith, C. J. Ziegler, J. Wang, Nat. Chem. 2021, 13, 743–750.
- 18
- 18aX. Kuang, Y. Liu, H. Luo, Q. Li, F. Wu, C. Fan, J. Liu, J. Am. Chem. Soc. 2023, 145, 26932–26946;
- 18bG. R. Ediriweera, Y. Chang, Q. Wang, Y. Gong, D. T. Akhter, H. Pang, F. Y. Han, C. Chen, A. K. Whittaker, C. Fu, Chem. Mater. 2023, 35, 7252–7265.
- 19
- 19aJ. A. Codelli, California Institute of Technology 2014;
- 19bM. Schelhaas, H. Waldmann, Angew. Chem. Int. Ed. 1996, 35, 2056–2083.
- 20
- 20aS. Bernstein, L. Dorfman, J. Am. Chem. Soc. 1946, 68, 1152–1153;
- 20bM. Wolfrom, J. Karabinos, J. Am. Chem. Soc. 1944, 66, 909–911.
- 21A. M. White, I. R. Palombi, L. R. Malins, Chem. Sci. 2022, 13, 2809–2823.
- 22G. Segalovich-Gerendash, M. Baranov, N. G. Lemcoff, R. S. Phatake, Organometallics 2023, 42, 825–831.
- 23H. Zhao, H. He, Z. Shen, C. Wei, L. Yin, Y. Zhu, H. Lu, R. Song, D. Hu, J. Agric. Food Chem. 2023, 71, 17658–17668.
- 24
- 24aB. Liu, S. Thayumanavan, Cell. Rep. Phys. Sci. 2020, 1, 100271;
- 24bX. Xu, P. E. Saw, W. Tao, Y. Li, X. Ji, S. Bhasin, Y. Liu, D. Ayyash, J. Rasmussen, M. Huo, J. Shi, O. C. Farokhzad, Adv. Mater. 2017, 29, 1700141;
- 24cY. Zhang, J. Zhou, S. Ma, Y. He, J. Yang, Z. Gu, Biomacromolecules 2019, 20, 1899–1913.
- 25
- 25aF. Lafzi, A. S. Hussein, H. Kilic, S. Bayindir, J. Photochem. Photobiol. A 2023, 444, 114958;
- 25bY. Gu, S. Li, Y. Yu, J. Zhu, X. Yuan, X. Feng, Y. Lu, Macromol. Rapid Commun. 2024, 2300631.
- 26H. Zeng, Z. Tang, Y. Duan, S. Wu, B. Guo, Polymer 2021, 229, 124007.
- 27Q. Zong, J. Li, X. Xiao, X. Du, Y. Yuan, Acta Biomater. 2022, 154, 97–107.
- 28
- 28aV. Geetha Saraswathy, S. Sankararaman, J. Org. Chem. 1994, 59, 4665–4670;
- 28bP. Patil, K. A. Russo, J. T. McCune, A. C. Pollins, M. A. Cottam, B. R. Dollinger, C. R. DeJulius, M. K. Gupta, R. D'Arcy, J. M. Colazo, Sci. Transl. Med. 2022, 14, eabm6586;
- 28cS. A. Pourmousavi, S. S. Kazemi, Monatsh. Chem. 2011, 143, 917–923;
- 28dD. S. Wilson, G. Dalmasso, L. Wang, S. V. Sitaraman, D. Merlin, N. Murthy, Nat. Mater. 2010, 9, 923–928.
- 29
- 29aM. Martinez-Amezaga, A. G. Orrillo, R. L. E. Furlan, Chem. Sci. 2019, 10, 8338–8347;
- 29bA. G. Orrillo, A. M. Escalante, R. L. E. Furlan, Chem. Eur. J. 2016, 22, 6746–6749;
- 29cA. G. Orrillo, A. M. Escalante, R. L. E. Furlan, Org. Lett. 2017, 19, 1446–1449.
- 30
- 30aY. Jin, C. Hu, J. Wang, Y. Ding, J. Shi, Z. Wang, S. Xu, L. Yuan, Angew. Chem. Int. Ed. 2023, 62;
- 30bL. S. Kariyawasam, J. Rolsma, Y. Yang, Angew. Chem. Int. Ed. 2023, 62.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.