Orthogonal Radical and Cationic Single-Unit Monomer Insertions for Engineering Polymer Architectures
Ze Wei
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
These authors contributed equally.
Search for more papers by this authorWei He
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
These authors contributed equally.
Search for more papers by this authorZhihua Liu
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorYating Lin
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorMaolin Wang
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorLiang Li
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorChunxiao Wu
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorProf. Sheng Yang
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorCorresponding Author
Prof. Guhuan Liu
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorProf. Ronghua Yang
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorZe Wei
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
These authors contributed equally.
Search for more papers by this authorWei He
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
These authors contributed equally.
Search for more papers by this authorZhihua Liu
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorYating Lin
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorMaolin Wang
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorLiang Li
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorChunxiao Wu
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorProf. Sheng Yang
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorCorresponding Author
Prof. Guhuan Liu
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorProf. Ronghua Yang
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081 China
Search for more papers by this authorAbstract
The single-unit monomer insertion (SUMI), derived from living/controlled polymerization, can be directly functionalized at the end or within the chain of polymers prepared by living/controlled polymerization, offering potential applications in the preparation of polymers with complex architectures. Many scenarios demand the simultaneous incorporation of monomers suitable for different polymerization methods into complex polymers. Therefore, it becomes imperative to utilize SUMI technologies with diverse mechanisms, especially those that are compatible with each other. Here, we reported the orthogonal SUMI technique, seamlessly combining radical and cationic SUMI approaches. Through the careful optimization of monomer and chain transfer agent pairs and adjustments to reaction conditions, we can efficiently execute both radical and cationic SUMI processes in one pot without mutual interference. The utilization of orthogonal SUMI pairs facilitates the integration of radical and cationic reversible addition-fragmentation chain transfer (RAFT) polymerization in various configurations. This flexibility enables the synthesis of diblock, triblock, and star polymers that incorporate both cationically and radically polymerizable monomers. Moreover, we have successfully implemented a mixing mechanism of free radicals and cations in RAFT step-growth polymerization, resulting in the creation of a side-chain sequence-controlled polymer brushes.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202402265-sup-0001-misc_information.pdf5.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. W. Graessley, Acc. Chem. Res. 2002, 10, 332–339;
- 1bS. T. Milner, Macromolecules 2002, 27, 2333–2335;
- 1cL. J. Fetters, B. J. Bauer Rub, Chem. Tech. 1978, 51, 406–436;
- 1dG. Polymeropoulos, G. Zapsas, N. Hadjichristidis, A. Avgeropoulos, ACS Macro Lett. 2015, 4, 1392–1397;
- 1eP. J. Stals, Y. Li, J. Burdynska, R. Nicolay, A. Nese, A. R. Palmans, E. W. Meijer, K. Matyjaszewski, S. S. Sheiko, J. Am. Chem. Soc. 2013, 135, 11421–11424.
- 2
- 2aA. Gregory, M. H. Stenzel, Prog. Polym. Sci. 2012, 37, 38–105;
- 2bR. Matmour, Y. Gnanou, Prog. Polym. Sci. 2013, 38, 30–62;
- 2cH. Sun, C. P. Kabb, M. B. Sims, B. S. Sumerlin, Prog. Polym. Sci. 2019, 89, 61–75;
- 2dN. Hadjichristidis, M. Pitsikalis, S. Pispas, H. Iatrou, Chem. Rev. 2001, 101, 3747–3792;
- 2eD. Fournier, R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1369–1380;
- 2fM. A. Tasdelen, B. Kiskan, Y. Yagci, Prog. Polym. Sci. 2016, 52, 19–78.
- 3
- 3aJ. Xu, Macromolecules 2019, 52, 9068–9093;
- 3bC. Boyer, M. Kamigaito, K. Satoh, G. Moad, Prog. Polym. Sci. 2023, 138, 101648.
- 4
- 4aK. Takahata, N. Aizawa, M. Nagao, S. Uchida, R. Goseki, T. Ishizone, J. Am. Chem. Soc. 2021, 143, 11296–11301;
- 4bB. R. Elling, J. K. Su, J. D. Feist, Y. Xia, Chem 2019, 5, 2691–2701;
- 4cJ. C. Foster, J. T. Damron, H. Zhang, Macromolecules 2023, 56, 7931–7938;
- 4dJ. G. Baker, R. Zhang, C. A. Figg, J. Am. Chem. Soc. 2024, 146, 106–111;
- 4eS. Ida, T. Terashima, M. Ouchi, M. Sawamoto, J. Polym. Sci. Part A 2010, 48, 3375–3381.
- 5
- 5aW. Tao, W. He, X. Feng, G. Liu, Q. Shi, J. Tan, J. Hu, S. Yang, G. Liu, R. Yang, J. Am. Chem. Soc. 2023, 145, 3636–3646;
- 5bJ. Nam, Y. Kim, J. G. Kim, M. Seo, Macromolecules 2019, 52, 9484–9494;
- 5cR. Gupta, M. Misra, W. Zhang, A. Mukhtyar, S. P. Gido, A. Ribbe, F. A. Escobedo, E. B. Coughlin, Macromolecules 2021, 54, 4401–4411;
- 5dG. Y. Shi, X. Z. Tang, C. Y. Pan, J. Polym. Sci. Part A 2008, 46, 2390–2401;
- 5eX.-S. Feng, C.-Y. Pan, Macromolecules 2002, 35, 4888–4893;
- 5fL. Yang, H. Zhou, G. Shi, Y. Wang, C. Y. Pan, J. Polym. Sci. Part A 2008, 46, 6641–6653.
- 6H. Yuki, J. Hotta, Y. Okamoto, S. Murahashi, Bull. Chem. Soc. Jpn. 1967, 40, 2659–2663.
- 7M. Minoda, M. Sawamoto, T. Higashimura, Macromolecules 2002, 23, 4889–4895.
- 8
- 8aA. Song, K. A. Parker, N. S. Sampson, J. Am. Chem. Soc. 2009, 131, 3444–3445;
- 8bB. R. Elling, Y. Xia, J. Am. Chem. Soc. 2015, 137, 9922–9926.
- 9J. Tanaka, S. Hakkinen, P. T. Boeck, Y. Cong, S. Perrier, S. S. Sheiko, W. You, Angew. Chem. Int. Ed. 2020, 59, 7203–7208.
- 10
- 10aR. T. A. Mayadunne, E. Rizzardo, J. Chiefari, Y. K. Chong, G. Moad, S. H. Thang, Macromolecules 1999, 32, 6977–6980;
- 10bG. Moad, E. Rizzardo, S. H. Thang Aus, J. Chem. 2005, 58, ;
- 10cM. Uchiyama, K. Satoh, M. Kamigaito, Angew. Chem. Int. Ed. 2015, 54, 1924–1928;
- 10dV. Kottisch, Q. Michaudel, B. P. Fors, J. Am. Chem. Soc. 2016, 138, 15535–15538;
- 10eS. Perrier, Macromolecules 2017, 50, 7433–7447;
- 10fV. Kottisch, Q. Michaudel, B. P. Fors, J. Am. Chem. Soc. 2017, 139, 10665–10668.
- 11
- 11aJ. Tanaka, N. E. Archer, M. J. Grant, W. You, J. Am. Chem. Soc. 2021, 143, 15918–15923;
- 11bP. T. Boeck, N. E. Archer, J. Tanaka, W. You Polym, Chem. 2022, 13, 2589–2594;
- 11cZ. Li, J. Li, X. Pan, Z. Zhang, J. Zhu, ACS Macro Lett. 2022, 11, 230–235.
- 12M. Chen, J. Li, K. Ma, G. Jin, X. Pan, Z. Zhang, J. Zhu, Angew. Chem. Int. Ed. 2021, 60, 19705–19709.
- 13G. Odian, In Principles of Polymecrization, 4th ed.; John Wiley & Sons: New York 1981.
- 14S. Aoshima, S. Kanaoka, Chem. Rev. 2009, 109, 5245–5287.
- 15
- 15aJ. Xu, S. Shanmugam, C. Fu, K. F. Aguey-Zinsou, C. Boyer, J. Am. Chem. Soc. 2016, 138, 3094–3106;
- 15bJ. Xu, C. Fu, S. Shanmugam, C. J. Hawker, G. Moad, C. Boyer, Angew. Chem. Int. Ed. 2017, 56, 8376–8383;
- 15cZ. Huang, B. B. Noble, N. Corrigan, Y. Chu, K. Satoh, D. S. Thomas, C. J. Hawker, G. Moad, M. Kamigaito, M. L. Coote, C. Boyer, J. Xu, J. Am. Chem. Soc. 2018, 140, 13392–13406.
- 16S. V. Kostjuk, A. V. Radchenko, F. Ganachaud, Macromolecules 2007, 40, 482–490.
- 17
- 17aS. Kwon, Y. Lee, H. Jeon, K. Han, S. Mah, J. Appl. Polym. Sci. 2006, 101, 3581–3586;
- 17bT. Hirano, R. Kizu, J. Hashimoto, N. Munekane, Y. Miwa, M. Oshimura, K. Ute Polym, Chem. 2018, 9, 1421–1429.
- 18
- 18aG. Kaszas, J. E. Puskas, C. C. Chen, J. P. Kennedy, Polym. Bull. 1988, 20, 413–419;
- 18bY. Wu, G. Wu, J. Polym. Sci. Part A 2002, 40, 2209–2214.
- 19
- 19aS. M. Clouthier, J. Tanaka, W. You Polym, Chem. 2022, 13, 6114–6119;
- 19bP. T. Boeck, J. Tanaka, W. You, B. S. Sumerlin, A. S. Veige, Polym. Chem. 2023, 14, 2592–2598;
- 19cJ. Tanaka, J. Li, S. M. Clouthier, W. You, Chem. Commun. 2023, 59, 8168–8189;
- 19dN. E. Archer, P. T. Boeck, Y. Ajirniar, J. Tanaka, W. You, ACS Macro Lett. 2022, 11, 1079–1084.
- 20P. J. Flory, J. Am. Chem. Soc. 2002, 58, 1877–1885.
10.1021/ja01301a016 Google Scholar
- 21S. Coca, K. Matyjaszewski, Macromolecules 1997, 30, 2808–2810.
- 22S. Sugihara, K. Yamashita, K. Matsuzuka, I. Ikeda, Y. Maeda, Macromolecules 2011, 45, 794–804.
- 23
- 23aL. Wu, B. Rondon, S. Dym, W. Wang, K. Chen, J. Niu, Prog. Polym. Sci. 2023, 145, ;
- 23bM. Uchiyama, K. Satoh, M. Kamigaito, Prog. Polym. Sci. 2022, 124, ;
- 23cN. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci. 2020, 111, ;
- 23dM. Kamigaito, Polym. J. 2022, 54, 1391–1405.
- 24
- 24aS. Kumagai, K. Nagai, K. Satoh, M. Kamigaito, Macromolecules 2010, 43, 7523–7531;
- 24bH. Aoshima, M. Uchiyama, K. Satoh, M. Kamigaito, Angew. Chem. Int. Ed. 2014, 53, 10932–10936.
- 25
- 25aM. J. Supej, B. M. Peterson, B. P. Fors, Chem 2020, 6, 1794–1803;
- 25bB. M. Peterson, V. Kottisch, M. J. Supej, B. P. Fors, ACS Cent. Sci. 2018, 4, 1228–1234.
- 26
- 26aT. P. Varner, A. J. Teator, Y. Reddi, P. E. Jacky, C. J. Cramer, F. A. Leibfarth, J. Am. Chem. Soc. 2020, 142, 17175–17186;
- 26bN. Haridharan, K. Ponnusamy, R. Dhamodharan, J. Polym. Sci. Part A 2010, 48, 5329–5338;
- 26cK. Ishizu, Y. Ohta, S. Kawauchi, Macromolecules 2002, 35, 3781–3784;
- 26dK. Garg, C. Majumder, S. K. Nayak, D. K. Aswal, S. K. Gupta, S. Chattopadhyay, Phys. Chem. Chem. Phys. 2015, 17, 1891–1899.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.