Elevated Water Oxidation by Cation Leaching Enabled Tunable Surface Reconstruction
Songzhu Luo
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Chencheng Dai
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorYike Ye
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Nanyang Environment and Water Research Institute (NEWRI), Interdisciplinary Graduate School, 1 Cleantech Loop, CleanTech One, Singapore, 637141 Singapore
Search for more papers by this authorDr. Qian Wu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Jiarui Wang
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Xiaoning Li
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Shibo Xi
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833 Singapore
Search for more papers by this authorCorresponding Author
Prof. Zhichuan J. Xu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Nanyang Environment and Water Research Institute (NEWRI), Interdisciplinary Graduate School, 1 Cleantech Loop, CleanTech One, Singapore, 637141 Singapore
The Centre of Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorSongzhu Luo
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Chencheng Dai
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorYike Ye
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Nanyang Environment and Water Research Institute (NEWRI), Interdisciplinary Graduate School, 1 Cleantech Loop, CleanTech One, Singapore, 637141 Singapore
Search for more papers by this authorDr. Qian Wu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Jiarui Wang
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Xiaoning Li
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorDr. Shibo Xi
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833 Singapore
Search for more papers by this authorCorresponding Author
Prof. Zhichuan J. Xu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Nanyang Environment and Water Research Institute (NEWRI), Interdisciplinary Graduate School, 1 Cleantech Loop, CleanTech One, Singapore, 637141 Singapore
The Centre of Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorAbstract
Water electrolysis is one promising and eco-friendly technique for energy storage, yet its overall efficiency is hindered by the sluggish kinetics of oxygen evolution reaction (OER). Therefore, developing strategies to boost OER catalyst performance is crucial. With the advances in characterization techniques, an extensive phenomenon of surface structure evolution into an active amorphous layer was uncovered. Surface reconstruction in a controlled fashion was then proposed as an emerging strategy to elevate water oxidation efficiency. In this work, Cr substitution induces the reconstruction of NiFexCr2-xO4 during cyclic voltammetry (CV) conditioning by Cr leaching, which leads to a superior OER performance. The best-performed NiFe0.25Cr1.75O4 shows a ~1500 % current density promotion at overpotential η=300 mV, which outperforms many advanced NiFe-based OER catalysts. It is also found that their OER activities are mainly determined by Ni : Fe ratio rather than considering the contribution of Cr. Meanwhile, the turnover frequency (TOF) values based on redox peak and total mass were obtained and analysed, and their possible limitations in the case of NiFexCr2-xO4 are discussed. Additionally, the high activity and durability were further verified in a membrane electrode assembly (MEA) cell, highlighting its potential for practical large-scale and sustainable hydrogen gas generation.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202402184-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. F. Lamb, T. Wiedmann, J. Pongratz, R. Andrew, M. Crippa, J. G. J. Olivier, D. Wiedenhofer, G. Mattioli, A. A. Khourdajie, J. House, S. Pachauri, M. Figueroa, Y. Saheb, R. Slade, K. Hubacek, L. Sun, S. K. Ribeiro, S. Khennas, S. de la Rue du Can, L. Chapungu, S. J. Davis, I. Bashmakov, H. Dai, S. Dhakal, X. Tan, Y. Geng, B. Gu, J. Minx, Environ. Res. Lett. 2021, 16, 073005;
- 1bA. G. Olabi, M. A. Abdelkareem, Renewable Sustainable Energy Rev. 2022, 158, 112111.
- 2
- 2aJ. Song, C. Wei, Z. F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196–2214;
- 2bS. Chu, A. Majumdar, Nature 2012, 488, 294–303;
- 2cC. Hu, L. Zhang, J. Gong, Energy Environ. Sci. 2019, 12, 2620–2645;
- 2dH. B. Gray, Nat. Chem. 2009, 1, 7.
- 3C. Wei, R. R. Rao, J. Peng, B. Huang, I. E. L. Stephens, M. Risch, Z. J. Xu, Y. Shao-Horn, Adv. Mater. 2019, 31, e1806296.
- 4
- 4aM. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, S. W. Boettcher, Chem. Mater. 2015, 27, 7549–7558;
- 4bJ. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751–756.
- 5
- 5aY. Li, X. Du, J. Huang, C. Wu, Y. Sun, G. Zou, C. Yang, J. Xiong, Small 2019, 15, 1901980;
- 5bX. Liu, J. Meng, J. Zhu, M. Huang, B. Wen, R. Guo, L. Mai, Adv. Mater. 2021, 33, 2007344;
- 5cN. C. S. Selvam, L. Du, B. Y. Xia, P. J. Yoo, B. You, Adv. Funct. Mater. 2020, 31, 2008190;
- 5dH. Li, Y. Chen, J. Z. Y. Seow, C. Liu, A. C. Fisher, J. W. Ager, Z. J. Xu, Small Sci. 2021, 2, 2100048;
- 5eY. Chen, H. Li, J. Wang, Y. Du, S. Xi, Y. Sun, M. Sherburne, J. W. Ager, 3rd, A. C. Fisher, Z. J. Xu, Nat. Commun. 2019, 10, 572.
- 6K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich, Y.-L. Lee, A. Grimaud, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 3264–3270.
- 7J. Liu, L. Guo, Matter 2021, 4, 2850–2873.
- 8
- 8aC. Roy, B. Sebok, S. B. Scott, E. M. Fiordaliso, J. E. Sørensen, A. Bodin, D. B. Trimarco, C. D. Damsgaard, P. C. K. Vesborg, O. Hansen, I. E. L. Stephens, J. Kibsgaard, I. Chorkendorff, Nat. Catal. 2018, 1, 820–829;
- 8bD. A. Corrigan, J. Electrochem. Soc. 1987, 134, 377–384;
- 8cZ. Cai, D. Zhou, M. Wang, S. M. Bak, Y. Wu, Z. Wu, Y. Tian, X. Xiong, Y. Li, W. Liu, S. Siahrostami, Y. Kuang, X. Q. Yang, H. Duan, Z. Feng, H. Wang, X. Sun, Angew. Chem. Int. Ed. 2018, 57, 9392–9396;
- 8dR. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, B. Liu, Adv. Mater. 2019, 31, 1903909;
- 8eJ. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange, B. Zhang, J. Am. Chem. Soc. 2018, 140, 3876–3879.
- 9F. Dionigi, P. Strasser, Adv. Energy Mater. 2016, 6, 1600621.
- 10W. Cai, R. Chen, H. Yang, H. B. Tao, H. Y. Wang, J. Gao, W. Liu, S. Liu, S. F. Hung, B. Liu, Nano Lett. 2020, 20, 4278–4285.
- 11Y. J. Son, S. Kim, V. Leung, K. Kawashima, J. Noh, K. Kim, R. A. Marquez, O. A. Carrasco-Jaim, L. A. Smith, H. Celio, D. J. Milliron, B. A. Korgel, C. B. Mullins, ACS Catal. 2022, 12, 10384–10399.
- 12
- 12aL. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744–6753;
- 12bM. B. Stevens, C. D. M. Trang, L. J. Enman, J. Deng, S. W. Boettcher, J. Am. Chem. Soc. 2017, 139, 11361–11364.
- 13
- 13aZ. Liu, G. Wang, X. Zhu, Y. Wang, Y. Zou, S. Zang, S. Wang, Angew. Chem. Int. Ed. 2020, 59, 4736–4742;
- 13bY. Duan, J. Y. Lee, S. Xi, Y. Sun, J. Ge, S. J. H. Ong, Y. Chen, S. Dou, F. Meng, C. Diao, A. C. Fisher, X. Wang, G. G. Scherer, A. Grimaud, Z. J. Xu, Angew. Chem. Int. Ed. 2021, 60, 7418–7425.
- 14M. Wang, Z. Feng, Curr. Opin. Electrochem. 2021, 30, 100803.
- 15M. Wilke, F. Farges, P.-E. Petit, G. E. Brown, F. Martin, Am. Mineral. 2001, 86, 714–730.
- 16
- 16aD. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 2009, 113, 8606–8615;
- 16bX. Li, L. Ge, Y. Du, H. Huang, Y. Ha, Z. Fu, Y. Lu, W. Yang, X. Wang, Z. Cheng, ACS Nano 2023, 17, 6811–6821.
- 17T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763–772.
- 18F. Dionigi, J. Zhu, Z. Zeng, T. Merzdorf, H. Sarodnik, M. Gliech, L. Pan, W. X. Li, J. Greeley, P. Strasser, Angew. Chem. Int. Ed. 2021, 60, 14446–14457.
- 19
- 19aL. Trotochaud, J. K. Ranney, K. N. Williams, S. W. Boettcher, J. Am. Chem. Soc. 2012, 134, 17253–17261;
- 19bY. Duan, Z.-Y. Yu, S.-J. Hu, X.-S. Zheng, C.-T. Zhang, H.-H. Ding, B.-C. Hu, Q.-Q. Fu, Z.-L. Yu, X. Zheng, J.-F. Zhu, M.-R. Gao, S.-H. Yu, Angew. Chem. Int. Ed. 2019, 58, 15772–15777.
- 20
- 20aN. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 2017, 95, 197–206;
- 20bX. Ren, C. Wei, Y. Sun, X. Liu, F. Meng, X. Meng, S. Sun, S. Xi, Y. Du, Z. Bi, G. Shang, A. C. Fisher, L. Gu, Z. J. Xu, Adv. Mater. 2020, 2001292.
- 21M. Gorlin, J. Ferreira de Araujo, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2017, 139, 2070–2082.
- 22
- 22aK. A. Stoerzinger, X. Renshaw Wang, J. Hwang, R. R. Rao, W. T. Hong, C. M. Rouleau, D. Lee, Y. Yu, E. J. Crumlin, Y. Shao-Horn, Top. Catal. 2018, 61, 2161–2174;
- 22bL. Liardet, X. Hu, ACS Catal. 2018, 8, 644–650.
- 23F. Song, X. Hu, Nat. Commun. 2014, 5, 4477.
- 24T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater. 2018, 30, 1800757.
- 25X. Yu, M. Zhang, W. Yuan, G. Shi, J. Mater. Chem. A 2015, 3, 6921–6928.
- 26B.-Q. Li, Z.-J. Xia, B. Zhang, C. Tang, H.-F. Wang, Q. Zhang, Nat. Commun. 2017, 8, 934.
- 27C. Wei, Z. J. Xu, Small Methods 2018, 2, 1800168.
- 28S. Anantharaj, P. E. Karthik, S. Noda, Angew. Chem. Int. Ed. 2021, 60, 23051–23067.
- 29
- 29aM. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452–8455;
- 29bW. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, ACS Nano 2015, 9, 1977–1984;
- 29cX. Lu, C. Zhao, Nat. Commun. 2015, 6, 6616;
- 29dB. J. Trzesniewski, O. Diaz-Morales, D. A. Vermaas, A. Longo, W. Bras, M. T. Koper, W. A. Smith, J. Am. Chem. Soc. 2015, 137, 15112–15121;
- 29eC. Feng, M. B. Faheem, J. Fu, Y. Xiao, C. Li, Y. Li, ACS Catal. 2020, 10, 4019–4047.
- 30
- 30aA. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1; 011002;
- 30bA. K. Singh, L. Zhou, A. Shinde, S. K. Suram, J. H. Montoya, D. Winston, J. M. Gregoire, K. A. Persson, Chem. Mater. 2017, 29, 10159–10167;
- 30cK. A. Persson, B. Waldwick, P. Lazic, G. Ceder, Phys. Rev. B 2012, 85, 235438.
- 31
- 31aH. Wang, S. M. Butorin, A. T. Young, J. Guo, J. Phys. Chem. C 2013, 117, 24767–24772;
- 31bH. Wang, C. Y. Ralston, D. S. Patil, R. M. Jones, W. Gu, M. Verhagen, M. Adams, P. Ge, C. Riordan, C. A. Marganian, P. Mascharak, J. Kovacs, C. G. Miller, T. J. Collins, S. Brooker, P. D. Croucher, K. Wang, E. I. Stiefel, S. P. Cramer, J. Am. Chem. Soc. 2000, 122, 10544–10552.
- 32
- 32aF. M. F. de Groot, Z. W. Hu, M. F. Lopez, G. Kaindl, F. Guillot, M. Tronc, J. Chem. Phys. 1994, 101, 6570–6576;
- 32bY. Uchimoto, H. Sawada, T. Yao, J. Power Sources 2001, 97–98, 326–327.
- 33
- 33aA. Sharma, M. Varshney, H. J. Shin, B.-H. Lee, K. H. Chae, S. O. Won, Mater. Chem. Phys. 2017, 191, 129–144;
- 33bD. Drevon, M. Görlin, P. Chernev, L. Xi, H. Dau, K. M. Lange, Sci. Rep. 2019, 9, 1532.
- 34J. Xiao, A. M. Oliveira, L. Wang, Y. Zhao, T. Wang, J. Wang, B. P. Setzler, Y. Yan, ACS Catal. 2021, 11, 264–270.
- 35M. R. Kraglund, M. Carmo, G. Schiller, S. A. Ansar, D. Aili, E. Christensen, J. O. Jensen, Energy Environ. Sci. 2019, 12, 3313–3318.
- 36H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, Y. Tsuji, ACS Catal. 2020, 10, 1886–1893.
- 37L. Karvonen, M. Valkeapää, R.-S. Liu, J.-M. Chen, H. Yamauchi, M. Karppinen, Chem. Mater. 2010, 22, 70–76.
- 38T. Pylkkänen, J. Lehtola, M. Hakala, A. Sakko, G. Monaco, S. Huotari, K. Hämäläinen, J. Phys. Chem. B 2010, 114, 13076–13083.
- 39
- 39aF. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, H. Petersen, Phys. Rev. B 1989, 40, 5715–5723;
- 39bH. Gao, W. Sun, X. Tian, J. Liao, C. Ma, Y. Hu, G. Du, J. Yang, C. Ge, ACS Appl. Mater. Interfaces 2022, 14, 15205–15213;
- 39cH. Zhang, L. Wu, R. Feng, S. Wang, C.-S. Hsu, Y. Ni, A. Ahmad, C. Zhang, H. Wu, H.-M. Chen, W. Zhang, Y. Li, P. Liu, F. Song, ACS Catal. 2023, 13, 6000–6012;
- 39dS.-i. Nakai, T. Mitsuishi, H. Sugawara, H. Maezawa, T. Matsukawa, S. Mitani, K. Yamasaki, T. Fujikawa, Phys. Rev. B 1987, 36, 9241–9246;
- 39eY. Yang, W. H. Lie, R. R. Unocic, J. A. Yuwono, M. Klingenhof, T. Merzdorf, P. W. Buchheister, M. Kroschel, A. Walker, L. C. Gallington, L. Thomsen, P. V. Kumar, P. Strasser, J. A. Scott, N. M. Bedford, Adv. Mater. 2023, 35, 2305573.
- 40
- 40aY. Yang, W. H. Lie, R. R. Unocic, J. A. Yuwono, M. Klingenhof, T. Merzdorf, P. W. Buchheister, M. Kroschel, A. Walker, L. C. Gallington, L. Thomsen, P. V. Kumar, P. Strasser, J. A. Scott, N. M. Bedford, Adv. Mater. 2023, 35, 2305573;
- 40bY. Tang, C. Wu, Q. Zhang, H. Zhong, A. Zou, J. Li, Y. Ma, H. An, Z. Yu, S. Xi, J. Xue, X. Wang, J. Wu, Angew. Chem. Int. Ed. 2023, 62, e202309107;
- 40cF. Frati, M. O. J. Y. Hunault, F. M. F. de Groot, Chem. Rev. 2020, 120, 4056–4110.
- 41
- 41aA. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457–465;
- 41bX. Wang, S. Xi, P. Huang, Y. Du, H. Zhong, Q. Wang, A. Borgna, Y. W. Zhang, Z. Wang, H. Wang, Z. G. Yu, W. S. V. Lee, J. Xue, Nature 2022, 611, 702–708;
- 41cE. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K. E. Ayers, T. J. Schmidt, Nat. Mater. 2017, 16, 925–931.
- 42C. Wu, X. Wang, Y. Tang, H. Zhong, X. Zhang, A. Zou, J. Zhu, C. Diao, S. Xi, J. Xue, J. Wu, Angew. Chem. Int. Ed. 2023, 62, e202218599.
- 43H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Chem. Rev. 2021, 121, 13174–13212.
- 44
- 44aY. Du, Y. Zhu, S. Xi, P. Yang, H. O. Moser, M. B. H. Breese, A. Borgna, J. Synchrotron Radiat. 2015, 22, 839–843;
- 44bB. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537–541;
- 44cE. Gann, C. R. McNeill, A. Tadich, B. C. C. Cowie, L. Thomsen, J. Synchrotron Radiat. 2016, 23, 374–380;
- 44dG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758–1775;
- 44eG. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558–561;
- 44fG. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15–50;
- 44gP. E. Blochl, Phys. Rev. B 1994, 50, 17953–17979;
- 44hJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868;
- 44iW. Dai, Y. a Zhu, Y. Ye, Y. Pan, T. Lu, S. Huang, J. Colloid Interface Sci. 2022, 608, 3030–3039;
- 44jY.-F. Li, A. Selloni, ACS Catal. 2014, 4, 1148–1153;
- 44kF. Lebreau, M. M. Islam, B. Diawara, P. Marcus, J. Phys. Chem. C 2014, 118, 18133–18145;
- 44lS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104;
- 44mJ. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886–17892;
- 44nJ. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Nørskov, J. Electroanal. Chem. 2007, 607, 83–89;
- 44oD. Yan, C. Xia, W. Zhang, Q. Hu, C. He, B. Y. Xia, S. Wang, Adv. Energy Mater. 2022, 12, 2202317.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.