Biosynthesis of Strained Amino Acids by a PLP-Dependent Enzyme through Cryptic Halogenation
Max B. Sosa
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720–1460 USA
Search for more papers by this authorJacob T. Leeman
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720–1460 USA
Search for more papers by this authorLorenzo J. Washington
Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720–3102 USA
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Search for more papers by this authorHenrik V. Scheller
Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720–3102 USA
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Search for more papers by this authorCorresponding Author
Prof. Michelle C. Y. Chang
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720–1460 USA
Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720–1462 USA
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720–3200 USA
Search for more papers by this authorMax B. Sosa
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720–1460 USA
Search for more papers by this authorJacob T. Leeman
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720–1460 USA
Search for more papers by this authorLorenzo J. Washington
Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720–3102 USA
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Search for more papers by this authorHenrik V. Scheller
Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720–3102 USA
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Search for more papers by this authorCorresponding Author
Prof. Michelle C. Y. Chang
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720–1460 USA
Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720–1462 USA
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720–3200 USA
Search for more papers by this authorAbstract
Amino acids (AAs) are modular building blocks which nature uses to synthesize both macromolecules, such as proteins, and small molecule natural products, such as alkaloids and non-ribosomal peptides. While the 20 main proteinogenic AAs display relatively limited side chain diversity, a wide range of non-canonical amino acids (ncAAs) exist that are not used by the ribosome for protein synthesis, but contain a broad array of structural features and functional groups. In this communication, we report the discovery of the biosynthetic pathway for a new ncAA, pazamine, which contains a cyclopropane ring formed in two steps. In the first step, a chlorine is added onto the C4 position of lysine by a radical halogenase, PazA. The cyclopropane ring is then formed in the next step by a pyridoxal-5′-phosphate-dependent enzyme, PazB, via an SN2-like attack at C4 to eliminate chloride. Genetic studies of this pathway in the native host, Pseudomonas azotoformans, show that pazamine potentially inhibits ethylene biosynthesis in growing plants based on alterations in the root phenotype of Arabidopsis thaliana seedlings. We further show that PazB can be utilized to make an alternative cyclobutane-containing AA. These discoveries may lead to advances in biocatalytic production of specialty chemicals and agricultural biotechnology.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202319344-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Hedges, K. S. Ryan, Chem. Rev. 2020, 120, 3161–3209.
- 2P. G. Arnison, M. J. Bibb, G. Bierbaum, A. A. Bowers, T. S. Bugni, G. Bulaj, J. A. Camarero, D. J. Campopiano, G. L. Challis, J. Clardy, P. D. Cotter, D. J. Craik, M. Dawson, E. Dittmann, S. Donadio, P. C. Dorrestein, K.-D. Entian, M. A. Fischbach, J. S. Garavelli, U. Göransson, C. W. Gruber, D. H. Haft, T. K. Hemscheidt, C. Hertweck, C. Hill, A. R. Horswill, M. Jaspars, W. L. Kelly, J. P. Klinman, O. P. Kuipers, A. J. Link, W. Liu, M. A. Marahiel, D. A. Mitchell, G. N. Moll, B. S. Moore, R. Müller, S. K. Nair, I. F. Nes, G. E. Norris, B. M. Olivera, H. Onaka, M. L. Patchett, J. Piel, M. J. T. Reaney, S. Rebuffat, R. P. Ross, H.-G. Sahl, E. W. Schmidt, M. E. Selsted, K. Severinov, B. Shen, K. Sivonen, L. Smith, T. Stein, R. D. Süssmuth, J. R. Tagg, G.-L. Tang, A. W. Truman, J. C. Vederas, C. T. Walsh, J. D. Walton, S. C. Wenzel, J. M. Willey, W. A. van der Donk, Nat. Prod. Rep. 2013, 30, 108–160.
- 3R. D. Süssmuth, A. Mainz, Angew. Chem. Int. Ed. 2017, 56, 3770–3821.
- 4M. F. Freeman, C. Gurgui, M. J. Helf, B. I. Morinaka, A. R. Uria, N. J. Oldham, H.-G. Sahl, S. Matsunaga, J. Piel, Science 2012, 338, 387–390.
- 5A. W. Schultz, C. A. Lewis, M. R. Luzung, P. S. Baran, B. S. Moore, J. Nat. Prod. 2010, 73, 373–377.
- 6J. R. Jr Heemstra, C. T. Walsh, E. S. Sattely, J. Am. Chem. Soc. 2009, 131, 15317–15329.
- 7J. R. Chekan, P. Estrada, P. S. Covello, S. K. Nair, Proc. Natl. Acad. Sci. USA 2017, 114, 6551–6556.
- 8C. R. Zwick, M. B. Sosa, H. Renata, Angew. Chem. Int. Ed. 2019, 58, 18854–18858.
- 9M. E. Neugebauer, K. H. Sumida, J. G. Pelton, J. L. McMurry, J. A. Marchand, M. C. Y. Chang, Nat. Chem. Biol. 2019, 15, 1009–1016.
- 10J. A. Marchand, M. E. Neugebauer, M. C. Ing, C.-I. Lin, J. G. Pelton, M. C. Y. Chang, Nature 2019, 567, 420–424.
- 11D. Van Cura, T. L. Ng, J. Huang, H. Hager, J. F. Hartwig, J. D. Keasling, E. P. Balskus, Angew. Chem. Int. Ed. 2023, 62, e202304646.
- 12C. S. Neumann, W. Jiang, J. R. Heemstra Jr, E. A. Gontang, R. Kolter, C. T. Walsh, ChemBioChem 2012, 13, 972–976.
- 13M. Wang, H. Niikura, H.-Y. He, P. Daniel-Ivad, K. S. Ryan, Angew. Chem. Int. Ed. 2020, 59, 3881–3885.
- 14S. Shimo, R. Ushimaru, A. Engelbrecht, M. Harada, K. Miyamoto, A. Kulik, M. Uchiyama, L. Kaysser, I. Abe, J. Am. Chem. Soc. 2021, 143, 18413–18418.
- 15R. Bunno, T. Awakawa, T. Mori, I. Abe, Angew. Chem. Int. Ed. 2021, 60, 15827–15831.
- 16F. Yan, R. Müller, ACS Chem. Biol. 2019, 14, 99–105.
- 17C. D. Murphy, C. Schaffrath, D. O'Hagan, Chemosphere 2003, 52, 455–461.
- 18A. E. Galván, N. P. Paul, J. Chen, K. Yoshinaga-Sakurai, S. M. Utturkar, B. P. Rosen, M. Yoshinaga, Microbiol. Spectr. 2021, 9, e00502–21.
- 19A. A. Turanov, X.-M. Xu, B. A. Carlson, M.-H. Yoo, V. N. Gladyshev, D. L. Hatfield, Adv. Nutr. 2011, 2, 122–128.
- 20I. Barr, J. A. Latham, A. T. Iavarone, T. Chantarojsiri, J. D. Hwang, J. P. Klinman, J. Biol. Chem. 2016, 291, 8877–8884.
- 21D. P. Barondeau, C. D. Putnam, C. J. Kassmann, J. A. Tainer, E. D. Getzoff, Proc. Natl. Acad. Sci. USA 2003, 100, 12111–12116.
- 22V. Schirch, D. M. Szebenyi, Curr. Opin. Chem. Biol. 2005, 9, 482–487.
- 23J. N. Scarsdale, S. Radaev, G. Kazanina, V. Schirch, H. T. Wright, J. Mol. Biol. 2000, 296, 155–168.
- 24D. M. E. Szebenyi, F. N. Musayev, M. L. di Salvo, M. K. Safo, V. Schirch, Biochemistry 2004, 43, 6865–6876.
- 25Y. Xu, F. Tao, C. Ma, P. Xu, Appl. Environ. Microbiol. 2013, 79, 2836–2840.
- 26H. Tsugawa, T. Cajka, T. Kind, Y. Ma, B. Higgins, K. Ikeda, M. Kanazawa, J. VanderGheynst, O. Fiehn, M. Arita, Nat. Methods 2015, 12, 523–526.
- 27J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Nature 2021, 596, 583–589.
- 28M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger, Nat. Methods 2022, 19, 679–682.
- 29O. Trott, A. J. Olson, J. Comb. Chem. 2010, 31, 455–461.
- 30S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, A. J. Olson, Nat. Protoc. 2016, 11, 905–919.
- 31R. Wiesendanger, B. Martinoni, T. Boller, D. Arigoni, Experientia 1986, 42, 207–209.
- 32R. Wiesendanger, B. Martinoni, T. Boller, D. Arigoni, J. Chem. Soc. Chem. Commun. 1986, 238–239.
- 33K. Ramalingam, K. M. Lee, R. W. Woodard, A. B. Bleecker, H. Kende, Proc. Natl. Acad. Sci. USA 1985, 82, 7820–7824.
- 34C. Tricot, C. Vander Wauven, R. Wattiez, P. Falmagne, V. Stalon, Eur. J. Biochem. 1994, 224, 853–861.
- 35N. Mehmood, M. Saeed, S. Zafarullah, S. Hyder, Z. F. Rizvi, A. S. Gondal, N. Jamil, R. Iqbal, B. Ali, S. Ercisli, M. Kupe, ACS Omega 2023, 8, 22296–22315.
- 36D. O. Adams, S. F. Yang, PNAS 1979, 76, 170–174.
- 37S. Mersmann, G. Bourdais, S. Rietz, S. Robatzek, Plant Physiol. 2010, 154, 391–400.
- 38L. C. van Loon, B. P. J. Geraats, H. J. M. Linthorst, Trends Plant Sci. 2006, 11, 184–191.
- 39E. Gamalero, B. R. Glick, Plant Physiol. 2015, 169, 13–22.
- 40S. Ma, D. Mandalapu, S. Wang, Q. Zhang, Nat. Prod. Rep. 2022, 39, 926–945.
- 41T. T. Talele, J. Med. Chem. 2016, 59, 8712–8756.
- 42L. Souillart, N. Cramer, Chem. Rev. 2015, 115, 9410–9464.
- 43D. F. Iwig, A. Uchida, J. A. Stromberg, S. J. Booker, J. Am. Chem. Soc. 2005, 127, 11612–11613.
- 44C. R. Roach, D. E. Hall, P. Zerbe, J. Bohlmann, J. Biol. Chem. 2014, 289, 23859–23869.
- 45D. Jakubczyk, L. Caputi, A. Hatsch, C. A. F. Nielsen, M. Diefenbacher, J. Klein, A. Molt, H. Schröder, J. Z. Cheng, M. Naesby, S. E. O'Connor, Angew. Chem. Int. Ed. 2015, 54, 5117–5121.
- 46C. S. Neumann, C. T. Walsh, J. Am. Chem. Soc. 2008, 130, 14022–14023.
- 47E. A. Bell, M. Y. Qureshi, R. J. Pryce, D. H. Janzen, P. Lemke, J. Clardy, J. Am. Chem. Soc. 1980, 102, 1409–1412.
- 48Y. J. Hong, D. J. Tantillo, Chem. Soc. Rev. 2014, 43, 5042–5050.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.