Few-Layer Fullerene Network for Photocatalytic Pure Water Splitting into H2 and H2O2
Taotao Wang
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808 P. R. China
Search for more papers by this authorLi Zhang
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorJinbao Wu
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorProf. Muqing Chen
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808 P. R. China
Search for more papers by this authorProf. Shangfeng Yang
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorProf. Yalin Lu
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Pingwu Du
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorTaotao Wang
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808 P. R. China
Search for more papers by this authorLi Zhang
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorJinbao Wu
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorProf. Muqing Chen
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808 P. R. China
Search for more papers by this authorProf. Shangfeng Yang
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorProf. Yalin Lu
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Pingwu Du
Key Laboratory of Precision and Intelligent Chemistry, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026 P. R. China
Search for more papers by this authorAbstract
A few-layer fullerene network possesses several advantageous characteristics, including a large surface area, abundant active sites, high charge mobility, and an appropriate band gap and band edge for solar water splitting. Herein, we report for the first time that the few-layer fullerene network shows interesting photocatalytic performance in pure water splitting into H2 and H2O2 in the absence of any sacrificial reagents. Under optimal conditions, the H2 and H2O2 evolution rates can reach 91 and 116 μmol g−1 h−1, respectively, with good stability. This work demonstrates the novel application of the few-layer fullerene network in the field of energy conversion.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202311352-sup-0001-misc_information.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473;
- 1bS. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, Z. Mi, Nano Futures 2017, 1, 022001;
- 1cX. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A 2015, 3, 2485–2534;
- 1dS. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Nat. Mater. 2013, 12, 842–849.
- 2
- 2aD. Bahnemann, Sol. Energy 2004, 77, 445–459;
- 2bT. Zhang, J. Wu, J. Chen, Q. Pan, X. Wang, H. Zhong, R. Tao, J. Yan, Y. Hu, X. Ye, C. Chen, J. Chen, ACS Appl. Mater. Interfaces 2021, 13, 24682–24691;
- 2cZ. Lian, F. Wu, J. Zi, G. Li, W. Wang, H. Li, J. Am. Chem. Soc. 2023, 145, 15482–15487.
- 3
- 3aL. Wang, Y. Zhang, L. Chen, H. Xu, Y. Xiong, Adv. Mater. 2018, 30, 1801955;
- 3bX. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 2019, 59, 644–650;
- 3cG. Zhang, Z.-A. Lan, X. Wang, Chem. Sci. 2017, 8, 5261–5274.
- 4
- 4aN.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337–365;
- 4bC. C. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977–16987;
- 4cS. Lin, H. Huang, T. Ma, Y. Zhang, Adv. Sci. 2021, 8, 2002458.
- 5
- 5aX. Ning, G. Lu, Nanoscale 2020, 12, 1213–1223;
- 5bS. Cao, T.-S. Chan, Y.-R. Lu, X. Shi, B. Fu, Z. Wu, H. Li, K. Liu, S. Alzuabi, P. Cheng, M. Liu, T. Li, X. Chen, L. Piao, Nano Energy 2020, 67, 104287.
- 6
- 6aK. Zhang, H. Hu, L. Shi, B. Jia, H. Huang, X. Han, X. Sun, T. Ma, Small Sci. 2021, 1, 2100060;
- 6bZ. Haider, Y. S. Kang, ACS Appl. Mater. Interfaces 2014, 6, 10342–10352.
- 7
- 7aH. S. Kim, D. Kim, B. S. Kwak, G. B. Han, M.-H. Um, M. Kang, Chem. Eng. J. 2014, 243, 272–279;
- 7bZ. Lian, Y. Kobayashi, J. J. M. Vequizo, C. S. K. Ranasinghe, A. Yamakata, T. Nagai, K. Kimoto, K. Kobayashi, K. Tanaka, T. Teranishi, M. Sakamoto, Nat. Sustainability 2022, 5, 1092–1099.
- 8
- 8aX. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M. T. F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P. M. Ajayan, Adv. Energy Mater. 2017, 7, 1700025;
- 8bS. Zhang, G. Cheng, L. Guo, N. Wang, B. Tan, S. Jin, Angew. Chem. Int. Ed. 2020, 59, 6007–6014.
- 9Z. Sun, H. Zheng, J. Li, P. Du, Energy Environ. Sci. 2015, 8, 2668–2676.
- 10
- 10aR. Shi, H. F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Z. Lin, W. F. Fu, C. M. Che, Y. Chen, Adv. Mater. 2018, 30, 1705941;
- 10bH. Zhang, W. Tian, J. Zhang, X. Duan, S. Liu, H. Sun, S. Wang, Mater. Today Energy 2022, 23, 100915.
- 11
- 11aX. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, B. Peng, Z. Wang, Nano Energy 2021, 81, 105671;
- 11bL. Ni, Y. Xiao, X. Zhou, Y. Jiang, Y. Liu, W. Zhang, J. Zhang, Z. Liu, Inorg. Chem. 2022, 61, 19552–19566;
- 11cW. Zhang, S. Zhao, Y. Xing, H. Qin, Q. Zheng, P. Zhang, S. Zhang, X. Xu, Chem. Eng. J. 2022, 442, 136151.
- 12
- 12aK. Fuku, R. Takioka, K. Iwamura, M. Todoroki, K. Sayama, N. Ikenaga, Appl. Catal. B 2020, 272, 119003;
- 12bM. Mrowetz, E. Selli, New J. Chem. 2006, 30, 108–114;
- 12cP. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 2023, 62, e202304349.
- 13
- 13aS. Wu, H. Yu, S. Chen, X. Quan, ACS Catal. 2020, 10, 14380–14389;
- 13bL. Wang, J. Zhang, Y. Zhang, H. Yu, Y. Qu, J. Yu, Small 2022, 18, 2104561.
- 14
- 14aV. Krishna, D. Yanes, W. Imaram, A. Angerhofer, B. Koopman, B. Moudgil, Appl. Catal. B 2008, 79, 376–381;
- 14bY. Pan, X. Liu, W. Zhang, Z. Liu, G. Zeng, B. Shao, Q. Liang, Q. He, X. Yuan, D. Huang, M. Chen, Appl. Catal. B 2020, 265, 118579;
- 14cZ.-D. Meng, T. Ghosh, L. Zhu, J.-G. Choi, C.-Y. Park, W.-C. Oh, J. Mater. Chem. 2012, 22, 16127–16135.
- 15L. Hou, X. Cui, B. Guan, S. Wang, R. Li, Y. Liu, D. Zhu, J. Zheng, Nature 2022, 606, 507–510.
- 16
- 16aB. Peng, Nano Lett. 2023, 23, 652–658;
- 16bB. Peng, J. Am. Chem. Soc. 2022, 144, 19921–19931;
- 16cE. Meirzadeh, A. M. Evans, M. Rezaee, M. Milich, C. J. Dionne, T. P. Darlington, S. T. Bao, A. K. Bartholomew, T. Handa, D. J. Rizzo, R. A. Wiscons, M. Reza, A. Zangiabadi, N. Fardian-Melamed, A. C. Crowther, P. J. Schuck, D. N. Basov, X. Zhu, A. Giri, P. E. Hopkins, P. Kim, M. L. Steigerwald, J. Yang, C. Nuckolls, X. Roy, Nature 2023, 613, 71–76.
- 17M. Tanaka, S. Yamanaka, Cryst. Growth Des. 2018, 18, 3877–3882.
- 18F. Pan, K. Ni, T. Xu, H. Chen, Y. Wang, K. Gong, C. Liu, X. Li, M.-L. Lin, S. Li, X. Wang, W. Yan, W. Yin, P.-H. Tan, L. Sun, D. Yu, R. S. Ruoff, Y. Zhu, Nature 2023, 614, 95–101.
- 19C. P. Ewels, Nano Lett. 2006, 6, 890–895.
- 20
- 20aD. Zhang, B. Mao, D. Li, Y. Liu, F. Li, W. Dong, T. Jiang, W. Shi, Chem. Eng. J. 2021, 417, 128275;
- 20bP. Niu, L. Zhang, G. Liu, H. M. Cheng, Adv. Funct. Mater. 2012, 22, 4763–4770.
- 21T. Wang, H. Cao, M. Huang, P. Du, J. Phys. Chem. C 2021, 125, 23153–23161.
- 22T. Wang, M. Chen, J. Wu, P. Du, J. Mater. Chem. A 2023, 11, 2246–2251.
- 23J. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2014, 43, 7787–7812.
- 24H. Cheng, H. Lv, J. Cheng, L. Wang, X. Wu, H. Xu, Adv. Mater. 2022, 34, 2107480.
- 25X. Luan, Z. Yu, J. Zi, F. Gao, Z. Lian, Adv. Funct. Mater. 2023, 2304259.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.