Facile, Versatile and Stepwise Synthesis of High-Performance Oligomer Acceptors for Stable Organic Solar Cells
Chen Zhang
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Conceptualization (equal), Data curation (lead), Writing - original draft (lead)
Search for more papers by this authorJiali Song
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorJingwei Xue
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorShijie Wang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorZhongwei Ge
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorYuheng Man
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorProf. Wei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yanming Sun
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Conceptualization (lead), Writing - review & editing (lead)
Search for more papers by this authorChen Zhang
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Conceptualization (equal), Data curation (lead), Writing - original draft (lead)
Search for more papers by this authorJiali Song
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorJingwei Xue
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorShijie Wang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorZhongwei Ge
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorYuheng Man
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorProf. Wei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, P. R. China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Yanming Sun
School of Chemistry, Beihang University, 100191 Beijing, P. R. China
Contribution: Conceptualization (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202308595-sup-0001-misc_information.pdf6.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Lin, J. Wang, Z.-G Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170–1174;
- 1bX. Li, S. Luo, H. Sun, H. H.-Y. Sung, H. Yu, T. Liu, Y. Xiao, F. Bai, M. Pan, X. Lu, I. D. Williams, X. Guo, Y. Li, H. Yan, Energy Environ. Sci. 2021, 14, 4555–4563;
- 1cS.-Y. Chang, P. Cheng, G. Li, Y. Yang, Joule 2018, 2, 1039–1054;
- 1dM. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu, Z. Zhao, Q. Hu, B. W. Larson, H. Zhu, Z. Ma, Z. Tang, W. Feng, Y. Zhang, T. P. Russell, F. Liu, Nat. Commun. 2021, 12, 309;
- 1eK. Fukuda, K. Yu, T. Someya, Adv. Energy Mater. 2020, 10, 2000765;
- 1fD. Wang, Y. Li, G. Zhou, E. Gu, R. Xia, B. Yan, J. Yao, H. Zhu, X. Lu, H.-L. Yip, H. Chen, C.-Z. Li, Energy Environ. Sci. 2022, 15, 2629–2637;
- 1gG. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864–868;
- 1hR. Sun, T. Wang, X. Yang, Y. Wu, Y. Wang, Q. Wu, M. Zhang, C. J. Brabec, Y. Li, J. Min, Nat. Energy 2022, 7, 1087–1099;
- 1iH. Li, S. Liu, X. Wu, Q. Qi, H. Zhang, X. Meng, X. Hu, L. Ye, Y. Chen, Energy Environ. Sci. 2022, 15, 2130–2138;
- 1jP. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131–142;
- 1kX. Zhou, H. Wu, U. Bothra, X. Chen, G. Lu, H. Zhao, C. Zhao, Q. Luo, G. Lu, K. Zhou, D. Kabra, Z. Ma, W. Ma, Mater. Horiz. 2023, 10, 566–575.
- 2
- 2aJ. Fu, P. W. K. Fong, H. Liu, C.-S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M. Sutter-Fella, Y. Yang, G. Li, Nat. Commun. 2023, 14, 1760;
- 2bB. Fan, W. Gao, R. Zhang, W. Kaminsky, F. R. Lin, X. Xia, Q. Fan, Y. Li, Y. An, Y. Wu, M. Liu, X. Lu, W. J. Li, H.-L. Yip, F. Gao, A. K. Y. Jen, J. Am. Chem. Soc. 2023, 145, 5909–5919;
- 2cC. He, Q. Shen, B. Wu, Y. Gao, S. Li, J. Min, W. Ma, L. Zuo, H. Chen, Adv. Energy Mater. 2023, 13, 2204154;
- 2dQ. Fan, R. Ma, Z. Bi, X. Liao, B. Wu, S. Zhang, W. Su, J. Fang, C. Zhao, C. Yan, K. Chen, Y. Li, C. Gao, G. Li, W. Ma, Adv. Funct. Mater. 2023, 33, 2211385.
- 3
- 3aY. Qin, N. Balar, Z. Peng, A. Gadisa, I. Angunawela, A. Bagui, S. Kashani, J. Hou, H. Ade, Joule 2021, 5, 2129–2147;
- 3bB. Fan, W. Gao, X. Wu, X. Xia, Y. Wu, F. R. Lin, Q. Fan, X. Lu, W. J. Li, W. Ma, A. K. Y. Jen, Nat. Commun. 2022, 13, 5946;
- 3cY. Li, X. Huang, K. Ding, H. K. M. Sheriff, L. Ye, H. Liu, C.-Z. Li, H. Ade, S. R. Forrest, Nat. Commun. 2021, 12, 5419;
- 3dY. Wang, J. Lee, X. Hou, C. Labanti, J. Yan, E. Mazzolini, A. Parhar, J. Nelson, J.-S. Kim, Z. Li, Adv. Energy Mater. 2021, 11, 2003002;
- 3eY. Li, B. Huang, X. Zhang, J. Ding, Y. Zhang, L. Xiao, B. Wang, Q. Cheng, G. Huang, H. Zhang, Y. Yang, X. Qi, Q. Zheng, Y. Zhang, X. Qiu, M. Liang, H. Zhou, Nat. Commun. 2023, 14, 1241.
- 4
- 4aJ. Song, C. Li, J. Qiao, C. Liu, Y. Cai, Y. Li, J. Gao, M. H. Jee, X. Hao, H. Y. Woo, Z. Tang, H. Yan, Y. Sun, Matter 2023, 6, 1542–1554;
- 4bR. Sun, T. Wang, Q. Fan, M. Wu, X. Yang, X. Wu, Y. Yu, X. Xia, F. Cui, J. Wan, X. Lu, X. Hao, A. K. Y. Jen, E. Spiecker, J. Min, Joule 2023, 7, 221–237;
- 4cQ. Chen, Y. H. Han, L. R. Franco, C. F. N. Marchiori, Z. Genene, C. M. Araujo, J.-W. Lee, T. N.-L. Phan, J. Wu, D. Yu, D. J. Kim, T.-S. Kim, L. Hou, B. J. Kim, E. Wang, Nano-Micro Lett. 2022, 14, 164;
- 4dD. Zhou, C. Liao, S. Peng, X. Xu, Y. Guo, J. Xia, H. Meng, L. Yu, R. Li, Q. Peng, Adv. Sci. 2022, 9, 2202022.
- 5B. Qiu, Z. Chen, S. Qin, J. Yao, W. Huang, L. Meng, H. Zhu, Y. Yang, Z.-G. Zhang, Y. Li, Adv. Mater. 2020, 32, 1908373.
- 6J. Yuan, H. Zhang, R. Zhang, Y. Wang, J. Hou, M. Leclerc, X. Zhan, F. Huang, F. Gao, Y. Zou, Y. Li, Chem 2020, 6, 2147–2161.
- 7
- 7aH. Wang, C. Cao, H. Chen, H. Lai, C. Ke, Y. Zhu, H. Li, F. He, Angew. Chem. Int. Ed. 2022, 61, e202201844;
- 7bW. Liu, J. Yuan, C. Zhu, Q. Wei, S. Liang, H. Zhang, G. Zheng, Y. Hu, L. Meng, F. Gao, Y. Li, Y. Zou, Sci. China Chem. 2022, 65, 1374–1382;
- 7cY. Liang, D. Zhang, Z. Wu, T. Jia, L. Lüer, H. Tang, L. Hong, J. Zhang, K. Zhang, C. J. Brabec, N. Li, F. Huang, Nat. Energy 2022, 7, 1180–1190;
- 7dF. Qi, Y. Li, R. Zhang, F. R. Lin, K. Liu, Q. Fan, A. K. Y. Jen, Angew. Chem. Int. Ed. 2023, 62, e202303066.
- 8
- 8aJ.-W. Lee, C. Sun, C. Lee, Z. Tan, T. N.-L. Phan, H. Jeon, D. Jeong, S.-K. Kwon, Y.-H. Kim, B. J. Kim, ACS Energy Lett. 2023, 8, 1344–1353;
- 8bL. Zhang, Z. Zhang, D. Deng, H. Zhou, J. Zhang, Z. Wei, Adv. Sci. 2022, 9, 2202513.
- 9
- 9aC. Sun, J.-W. Lee, C. Lee, D. Lee, S. Cho, S.-K. Kwon, B. J. Kim, Y.-H. Kim, Joule 2023, 7, 416–430;
- 9bH. Chen, Z. Zhang, P. Wang, Y. Zhang, K. Ma, Y. Lin, T. Duan, T. He, Z. Ma, G. Long, C. Li, B. Kan, Z. Yao, X. Wan, Y. Chen, Energy Environ. Sci. 2023, 16, 1773–1782.
- 10
- 10aN. K. Elumalai, A. Uddin, Energy Environ. Sci. 2016, 9, 391–410;
- 10bD. Qian, Z. Zheng, H. Yao, W. Tress, T. R. Hopper, S. Chen, S. Li, J. Liu, S. Chen, J. Zhang, X.-K. Liu, B. Gao, L. Ouyang, Y. Jin, G. Pozina, I. A. Buyanova, W. M. Chen, O. Inganäs, V. Coropceanu, J.-L. Bredas, H. Yan, J. Hou, F. Zhang, A. A. Bakulin, F. Gao, Nat. Mater. 2018, 17, 703–709;
- 10cL. Zhan, S. Li, Y. Li, R. Sun, J. Min, Z. Bi, W. Ma, Z. Chen, G. Zhou, H. Zhu, M. Shi, L. Zuo, H. Chen, Joule 2022, 6, 662–675;
- 10dT. L. Nguyen, T. H. Lee, B. Gautam, S. Y. Park, K. Gundogdu, J. Y. Kim, H. Y. Woo, Adv. Funct. Mater. 2017, 27, 1702474;
- 10eK. Kawashima, Y. Tamai, H. Ohkita, I. Osaka, K. Takimiya, Nat. Commun. 2015, 6, 10085;
- 10fS.-i. Natsuda, T. Saito, R. Shirouchi, Y. Sakamoto, T. Takeyama, Y. Tamai, H. Ohkita, Energy Environ. Sci. 2022, 15, 1545–1555.
- 11
- 11aP. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Adv. Mater. 2007, 19, 1551–1566;
- 11bX. Duan, W. Song, J. Qiao, X. Li, Y. Cai, H. Wu, J. Zhang, X. Hao, Z. Tang, Z. Ge, F. Huang, Y. Sun, Energy Environ. Sci. 2022, 15, 1563–1572.
- 12
- 12aL. J. A. Koster, V. D. Mihailetchi, R. Ramaker, P. W. M. Blom, Appl. Phys. Lett. 2005, 86, 123509;
- 12bY. Cai, Q. Li, G. Lu, H. S. Ryu, Y. Li, H. Jin, Z. Chen, Z. Tang, G. Lu, X. Hao, H. Y. Woo, C. Zhang, Y. Sun, Nat. Commun. 2022, 13, 2369.
- 13A. K. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, A. J. Heeger, ACS Nano 2013, 7, 4569–4577.
- 14M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, X. Ma, J. Zhang, W. Tang, J. Mater. Chem. A 2017, 5, 3589–3598.
- 15T. Xia, Y. Cai, H. Fu, Y. Sun, Sci. China Chem. 2019, 62, 662–668.
- 16
- 16aS. E. Root, M. A. Alkhadra, D. Rodriquez, A. D. Printz, D. J. Lipomi, Chem. Mater. 2017, 29, 2646–2654;
- 16bD. Han, Y. Han, Y. Kim, J.-W. Lee, D. Jeong, H. Park, G.-U. Kim, F. S. Kim, B. J. Kim, J. Mater. Chem. A 2022, 10, 640–650.
- 17M. Ghasemi, N. Balar, Z. Peng, H. Hu, Y. Qin, T. Kim, J. J. Rech, M. Bidwell, W. Mask, I. McCulloch, W. You, A. Amassian, C. Risko, B. T. O'Connor, H. Ade, Nat. Mater. 2021, 20, 525–532.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.