Improved Thermal and Chemical Stability of Oxynitride Phosphor from Facile Chemical Synthesis for Vehicle Cornering Lights
Dr. Dawei Wen
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorHongmin Liu
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorZhe Ma
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorDr. Lei Zhou
School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082 P. R. China
Search for more papers by this authorJunhao Li
Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou, 510651 P. R. China
Search for more papers by this authorDr. Yue Guo
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorProf. Qingguang Zeng
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Peter A. Tanner
Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mingmei Wu
School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082 P. R. China
Search for more papers by this authorDr. Dawei Wen
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorHongmin Liu
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorZhe Ma
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorDr. Lei Zhou
School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082 P. R. China
Search for more papers by this authorJunhao Li
Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou, 510651 P. R. China
Search for more papers by this authorDr. Yue Guo
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorProf. Qingguang Zeng
School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Peter A. Tanner
Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mingmei Wu
School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082 P. R. China
Search for more papers by this authorAbstract
Orange Eu2+-doped phosphors are essential for light-emitting diodes for cornering lights to prevent fatal road accidents at night, but such phosphors require features of high thermal, chemical stability and facile synthesis. This study reports a series of yellow-orange-red emitting SrAl2Si3ON6:Eu2+ oxynitride phosphors, derived from the SrAlSi4N7 nitride iso-structure by replacing Si4+−N3− with Al3+−O2−. The introduction of a certain amount of oxygen enabled the facile synthesis under atmospheric pressure using the air-stable raw materials SrCO3, Eu2O3, AlN and Si3N4. SrAl2Si3ON6 has a smaller band gap and lower structure rigidity than SrAlSi4N7 (5.19 eV vs 5.50 eV, Debye temperature 719 K vs 760 K), but exhibits higher thermal stability with 100 % of room temperature intensity remaining at 150 °C compared to 85 % for SrAlSi4N7. Electron paramagnetic resonance, thermoluminescence and density functional theory revealed that the oxygen vacancy electron traps compensated the thermal loss. Additionally, no decrease in emission intensity was found after either being heated at 500 °C for 2 hours or being immersed in water for 20 days, implying both of the thermal and chemical stability of SrAl2Si3ON6:Eu2+ phosphors. The strategy of oxynitride-introduction from nitride promotes the development of low-cost thermally and chemically stable luminescent materials.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202307868-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y.-C. Lin, M. Karlsson, M. Bettinelli, Top. Curr. Chem. 2016, 374, 21.
- 2
- 2aP. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, W. Schnick, Nat. Mater. 2014, 13, 891–896;
- 2bX. Qin, X. Liu, W. Huang, M. Bettinelli, X. Liu, Chem. Rev. 2017, 117, 4488–4527;
- 2cM. Zhao, H. Liao, L. Ning, Q. Zhang, Q. Liu, Z. Xia, Adv. Mater. 2018, 30, 1802489;
- 2dG. J. Hoerder, M. Seibald, D. Baumann, T. Schröder, S. Peschke, P. C. Schmid, T. Tyborski, P. Pust, I. Stoll, M. Bergler, C. Patzig, S. Reißaus, M. Krause, L. Berthold, T. Höche, D. Johrendt, H. Huppertz, Nat. Commun. 2019, 10, 1824.
- 3X.-G. Yang, T. Liu, C.-Y. Wang, Nat. Energy 2021, 6, 176–185.
- 4
- 4aS. Li, L. Wang, D. Tang, Y. Cho, X. Liu, X. Zhou, L. Lu, L. Zhang, T. Takeda, N. Hirosaki, R.-J. Xie, Chem. Mater. 2018, 30, 494–505;
- 4bH. Liu, H. Liang, W. Zhang, Q. Zeng, D. Wen, Chem. Eng. J. 2021, 410, 128367.
- 5K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Electrochem. Solid-State Lett. 2006, 9, H22–H25.
- 6C. W. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen, H. T. Hintzen, J. Am. Chem. Soc. 2012, 134, 14108–14117.
- 7E. Elzer, P. Strobel, V. Weiler, P. J. Schmidt, W. Schnick, Chem. Mater. 2020, 32, 6611–6617.
- 8Y.-T. Tsai, H.-D. Nguyen, A. Lazarowska, S. Mahlik, M. Grinberg, R.-S. Liu, Angew. Chem. Int. Ed. 2016, 55, 9652–9656.
- 9
- 9aY. Sato, H. Kato, M. Kobayashi, T. Masaki, D.-H. Yoon, M. Kakihana, Angew. Chem. Int. Ed. 2014, 53, 7756–7759;
- 9bD. Wen, H. Kuwahara, H. Kato, M. Kobayashi, Y. Sato, T. Masaki, M. Kakihana, ACS Appl. Mater. Interfaces 2016, 8, 11615–11620.
- 10Y. H. Kim, P. Arunkumar, B. Y. Kim, S. Unithrattil, E. Kim, S.-H. Moon, J. Y. Hyun, K. H. Kim, D. Lee, J.-S. Lee, W. B. Im, Nat. Mater. 2017, 16, 543.
- 11J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu, Z. Xia, J. Am. Chem. Soc. 2018, 140, 9730–9736.
- 12Q. Wei, J. Ding, Y. Wang, Chem. Eng. J. 2020, 386, 124004.
- 13X. Fan, W. Chen, S. Xin, Z. Liu, M. Zhou, X. Yu, D. Zhou, X. Xu, J. Qiu, J. Mater. Chem. C 2018, 6, 2978–2982.
- 14C. Hecht, F. Stadler, P. J. Schmidt, J. S. auf der Günne, V. Baumann, W. Schnick, Chem. Mater. 2009, 21, 1595–1601.
- 15L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, Y. Luo, ACS Appl. Mater. Interfaces 2013, 5, 12839–12846.
- 16D. Wen, H. Kato, M. Kakihana, ACS Sustainable Chem. Eng. 2020, 8, 12286–12294.
- 17J. Ruan, R.-J. Xie, N. Hirosaki, T. Takeda, J. Am. Ceram. Soc. 2011, 94, 536–542.
- 18D. Wen, H. Liu, Y. Guo, Q. Zeng, M. Wu, R. S. Liu, Angew. Chem. Int. Ed. 2022, 61, e202204411.
- 19
- 19aE. Irran, K. Köllisch, S. Leoni, R. Nesper, P. F. Henry, M. T. Weller, W. Schnick, Chem. Eur. J. 2000, 6, 2714–2720;
10.1002/1521-3765(20000804)6:15<2714::AID-CHEM2714>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 19bD. Wen, H. Kato, M. Kakihana, J. Mater. Chem. C 2020, 8, 4510–4517.
- 20G. King, K. Ishida, K. Page, Y. Fukuda, A. K. Albessard, Y. Hattori, R. Hiramatsu, I. Mitsuishi, A. Okada, M. Kato, N. Fukushima, J. Mater. Chem. C 2015, 3, 3135–3140.
- 21K.-W. Huang, W.-T. Chen, C.-I. Chu, S.-F. Hu, H.-S. Sheu, B.-M. Cheng, J.-M. Chen, R.-S. Liu, Chem. Mater. 2012, 24, 2220–2227.
- 22
- 22aF. Stadler, O. Oeckler, J. Senker, H. A. Höppe, P. Kroll, W. Schnick, Angew. Chem. Int. Ed. 2005, 44, 567–570;
- 22bM. de Oliveira Jr., B. Aitken, H. Eckert, J. Phys. Chem. C 2018, 122, 19807–19815.
- 23P. Dorenbos, J. Lumin. 2013, 134, 310–318.
- 24
- 24aZ. Zhang, O. M. ten Kate, A. C. A. Delsing, Z. Man, R. Xie, Y. Shen, M. J. H. Stevens, P. H. L. Notten, P. Dorenbos, J. Zhao, H. T. Hintzen, J. Mater. Chem. C 2013, 1, 7856–7865;
- 24bS. Hariyani, J. Brgoch, Chem. Mater. 2020, 32, 6640–6649.
- 25
- 25aY. Wei, H. Yang, Z. Gao, X. Yun, G. Xing, C. Zhou, G. Li, Laser Photonics Rev. 2020, 14, 2000048;
- 25bL. Yuan, Y. Jin, D. Zhu, Z. Mou, G. Xie, Y. Hu, ACS Sustainable Chem. Eng. 2020, 8, 6543–6550.
- 26R. Shannon, Acta Crystallogr. 1976, 32, 751–767.
- 27Y. T. Tsai, C. Y. Chiang, W. Zhou, J. F. Lee, H. S. Sheu, R. S. Liu, J. Am. Chem. Soc. 2015, 137, 8936–8939.
- 28B. Lou, J. Wen, L. Ning, M. Yin, C.-G. Ma, C.-K. Duan, Phys. Rev. B 2021, 104, 115101.
- 29
- 29aJ. Brgoch, S. P. DenBaars, R. Seshadri, J. Phys. Chem. C 2013, 117, 17955–17959;
- 29bM. Hermus, P. C. Phan, A. C. Duke, J. Brgoch, Chem. Mater. 2017, 29, 5267–5275.
- 30J. Feng, H. Liu, Z. Ma, J. Feng, L. Chen, J. Li, Y. Cai, Q. Zeng, D. Wen, Y. Guo, Chem. Eng. J. 2022, 449, 137892.
- 31Y. Masubuchi, S. Nishitani, A. Hosono, Y. Kitagawa, J. Ueda, S. Tanabe, H. Yamane, M. Higuchi, S. Kikkawa, J. Mater. Chem. C 2018, 6, 6370–6377.
- 32X. Zhou, W. Geng, J. Li, Y. Wang, J. Ding, Y. Wang, Adv. Opt. Mater. 2020, 8, 1902003.
- 33V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 2009, 21, 2077–2084.
- 34M. Zhao, K. Cao, M. Liu, J. Zhang, R. Chen, Q. Zhang, Z. Xia, Angew. Chem. Int. Ed. 2020, 59, 12938–12943.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.