Induced-Fit-Identification in a Rigid Metal-Organic Framework for ppm-Level CO2 Removal and Ultra-Pure CO Enrichment
Dr. Peng Hu
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
Search for more papers by this authorJialang Hu
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Min Zhu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Chao Xiong
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorProf. Rajamani Krishna
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dan Zhao
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Hongbing Ji
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
Search for more papers by this authorDr. Peng Hu
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
Search for more papers by this authorJialang Hu
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Min Zhu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Chao Xiong
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorProf. Rajamani Krishna
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dan Zhao
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Hongbing Ji
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, P. R. China
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
Search for more papers by this authorAbstract
Removing CO2 from crude syngas via physical adsorption is an effective method to yield eligible syngas. However, the bottleneck in trapping ppm-level CO2 and improving CO purity at higher working temperatures are major challenges. Here we report a thermoresponsive metal–organic framework (1 a-apz), assembled by rigid Mg2(dobdc) (1 a) and aminopyrazine (apz), which not only affords an ultra-high CO2 capacity (145.0/197.6 cm3 g−1 (0.01/0.1 bar) at 298 K) but also produces ultra-pure CO (purity ≥99.99 %) at a practical ambient temperature (TA). Several characterization results, including variable-temperature tests, in situ high-resolution synchrotron X-ray diffraction (HR-SXRD), and simulations, explicitly unravel that the excellent property is attributed to the induced-fit-identification in 1 a-apz that comprises self-adaption of apz, multiple binding sites, and complementary electrostatic potential (ESP). Breakthrough tests suggest that 1 a-apz can remove CO2 from 1/99 CO2/CO mixtures at practical 348 K, yielding 70.5 L kg−1 of CO with ultra-high purity of ≥99.99 %. The excellent separation performance is also revealed by separating crude syngas that contains quinary mixtures of H2/N2/CH4/CO/CO2 (46/18.3/2.4/32.3/1, v/v/v/v/v).
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202305944-sup-0001-Co(DOBDC)+apz.cif13.6 KB | Supporting Information |
ange202305944-sup-0001-Co(DOBDC)+pz.cif244.2 KB | Supporting Information |
ange202305944-sup-0001-Co(DOBDC).cif342.9 KB | Supporting Information |
ange202305944-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Huang, H. Ma, Z. Xu, W. Qian, H. Zhang, W. Ying, RSC Adv. 2021, 11, 13876–13884.
- 2M. S. Fan, A. Z. Abdullah, S. J. C. Bhatia, ChemCatChem 2009, 1, 192–208.
- 3A. Evans, R. Luebke, C. Petit, J. Mater. Chem. A 2018, 6, 10570–10594.
- 4K. J. Chen, Q. Y. Yang, S. Sen, D. G. Madden, A. Kumar, T. Pham, K. A. Forrest, N. Hosono, B. Space, S. Kitagawa, M. J. Zaworotko, Angew. Chem. Int. Ed. 2018, 57, 3332–3336.
- 5P. Hu, H. Wang, C. Xiong, H. Liu, J. Han, J. Zhou, Z. Zhao, Y. Wang, H. Ji, ACS Sustainable Chem. Eng. 2021, 9, 15897–15907.
- 6
- 6aA. Luna-Triguero, J. M. Vicent-Luna, M. J. Jansman, G. Zafeiropoulos, M. N. Tsampas, M. C. M. van de Sanden, H. N. Akse, S. Calero, Catal. Today 2021, 362, 113–121;
- 6bG. D. Wang, R. Krishna, Y. Z. Li, W. J. Shi, L. Hou, Y. Y. Wang, Z. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202213015.
- 7Y. Zhou, Y. Shen, Q. Fu, D. Zhang, Ind. Eng. Chem. Res. 2017, 56, 6741–6754.
- 8
- 8aP. Hu, R. Wang, Z. Gao, S. Jiang, Z. Zhao, H. Ji, Z. Zhao, Appl. Catal. B 2021, 296, 120371;
- 8bP. Hu, Z. Zhao, X. Sun, Y. Muhammad, J. Li, S. Chen, C. Pang, T. Liao, Z. Zhao, Chem. Eng. J. 2019, 356, 329–340;
- 8cT. He, X.-J. Kong, Z.-X. Bian, Y.-Z. Zhang, G.-R. Si, L.-H. Xie, X.-Q. Wu, H. Huang, Z. Chang, X.-H. Bu, M. Zaworotko, Z.-R. Nie, J.-R. Li, Nat. Mater. 2022, 21, 689–695;
- 8dR. L. Siegelman, E. J. Kim, J. R. J. Long, Nat. Mater. 2021, 20, 1060–1072.
- 9
- 9aJ. X. Wang, J. Pei, X. W. Gu, Y. X. Lin, B. Li, G. Qian, Chem. Commun. 2021, 57, 10051–10054;
- 9bH. Cao, S. Wang, Y. Wang, H. Lyu, R. Krishna, Z. Lu, J. Duan, W. Jin, CrystEngComm 2017, 19, 6927–6931;
- 9cA. Evans, M. Cummings, D. Decarolis, D. Gianolio, S. Shahid, G. Law, M. Attfield, D. Law, C. Petit, RSC Adv. 2020, 10, 5152–5162.
- 10Y. Chen, Y. Yang, Y. Wang, Q. Xiong, J. Yang, S. Xiang, L. Li, J. Li, Z. Zhang, B. Chen, J. Am. Chem. Soc. 2022, 144, 17033–17040.
- 11M. H. Yu, B. Space, D. Franz, W. Zhou, C. He, L. Li, R. Krishna, Z. Chang, W. Li, T. L. Hu, X. H. Bu, J. Am. Chem. Soc. 2019, 141, 17703–17712.
- 12Y. He, J. Shang, Q. Gu, G. Li, J. Li, R. Singh, P. Xiao, P. A. Webley, Chem. Commun. 2015, 51, 14716–14719.
- 13P. Hu, H. Liu, H. Wang, J. Zhou, Y. Wang, H. Ji, J. Mater. Chem. A 2022, 10, 881–890.
- 14S. E. Henkelis, S. M. Vornholt, D. B. Cordes, A. M. Slawin, P. S. Wheatley, R. Morris, CrystEngComm 2019, 21, 1857–1861.
- 15Z. Zhang, Q. Ding, J. Cui, X. Cui, H. Xing, Sci. China Mater. 2021, 64, 691–697.
- 16S. Mukherjee, N. Sikdar, D. O′Nolan, D. M. Franz, V. Gascon, A. Kumar, N. Kumar, H. S. Scott, D. G. Madden, P. E. Kruger, B. Space, M. J. Zaworotko, Sci. Adv. 2019, 5, eaax9171.
- 17
- 17aH. Zeng, M. Xie, Y. L. Huang, Y. Zhao, X. J. Xie, J. P. Bai, M. Y. Wan, R. Krishna, W. Lu, D. Li, Angew. Chem. Int. Ed. 2019, 58, 8515–8519;
- 17bT. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer, J. R. Long, Nature 2015, 519, 303–308;
- 17cK. S. Walton, A. R. Millward, D. Dubbeldam, H. Frost, J. J. Low, O. M. Yaghi, R. Q. Snurr, J. Am. Chem. Soc. 2008, 130, 406–407;
- 17dM. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2016, 138, 3022–3030.
- 18R. Vismara, G. Tuci, A. Tombesi, K. V. Domasevitch, C. Di Nicola, G. Giambastiani, M. R. Chierotti, S. Bordignon, R. Gobetto, C. Pettinari, A. Rossin, S. Galli, ACS Appl. Mater. Interfaces 2019, 11, 26956–26969.
- 19I. G. Shenderovich, G. Buntkowsky, A. Schreiber, E. Gedat, S. Sharif, J. Albrecht, N. S. Golubev, G. H. Findenegg, H.-H. Limbach, J. Phys. Chem. B 2003, 107, 11924–11939.
- 20
- 20aQ. Gao, J. Xu, D. Cao, Z. Chang, X. H. Bu, Angew. Chem. Int. Ed. 2016, 55, 15027–15030;
- 20bV. N. Vukotic, K. J. Harris, K. Zhu, R. W. Schurko, S. J. Loeb, Nat. Chem. 2012, 4, 456–460.
- 21Q. Tan, H. Huang, Y. Peng, Y. Chang, Z. Zhang, D. Liu, C. Zhong, J. Mater. Chem. A 2019, 7, 26574–26579.
- 22M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian Inc. Wallingford CT, 2010.
- 23I. Strauss, A. Mundstock, D. Hinrichs, R. Himstedt, A. Knebel, C. Reinhardt, D. Dorfs, J. Caro, Angew. Chem. Int. Ed. 2018, 57, 7434–7439.
- 24F. Zheng, D. N. Tran, B. J. Busche, G. E. Fryxell, R. S. Addleman, T. S. Zemanian, C. L. Aardahl, Ind. Eng. Chem. Res. 2005, 44, 3099–3105.
- 25D. E. Koshland Jr, Proc. Natl. Acad. Sci. USA 1958, 44, 98–104.
- 26
- 26aP. Hu, J. Hu, H. Wang, H. Liu, J. Zhou, Y. Liu, Y. Wang, H. Ji, ACS Appl. Mater. Interfaces 2022, 14, 15195–15204;
- 26bP. Hu, J. Han, J. Zhou, H. Wang, C. Xiong, H. Liu, X. Zhou, Y. Wang, H. Ji, Chem. Eng. J. 2021, 426, 131302;
- 26cD. E. Jaramillo, D. A. Reed, H. Z. Jiang, J. Oktawiec, M. W. Mara, A. C. Forse, D. J. Lussier, R. A. Murphy, M. Cunningham, V. Colombo, D. K. Shuh, J. A. Reimer, J. R. Long, Nat. Mater. 2020, 19, 517–521;
- 26dG. L. Smith, J. E. Eyley, X. Han, X. Zhang, J. Li, N. M. Jacques, H. G. Godfrey, S. P. Argent, L. J. McCormick McPherson, S. J. Teat, Y. Cheng, M. D. Frogley, G. Cinque, S. J. Day, C. C. Tang, T. L. Easun, S. Rudić, A. J. Ramirez-Cuesta, S. Yang, M. Schröder, Nat. Mater. 2019, 18, 1358–1365.
- 27P. Hu, J. Hu, H. Liu, H. Wang, J. Zhou, R. Krishna, H. Ji, ACS Cent. Sci. 2022, 8, 1159–1168.
- 28
- 28aC. C. K. Beh, P. A. Webley, Adsorpt. Sci. Technol. 2003, 21, 35–52;
- 28bC. C. Beh, P. Webley, Ind. Eng. Chem. Res. 2003, 42, 5287–5292.
- 29Deposition numbers 2264297 (As-synthesized 1 a-pz), 2264296 (As-synthesized 1 a-apz), 2264298 (CO2-loaded 1 a-apz at 298 K) and 2264299 (CO2-loaded 1 a-apz at 348 K) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.