Nascent Proteomics: Chemical Tools for Monitoring Newly Synthesized Proteins
Qi Tang
College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xing Chen
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Science, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorQi Tang
College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xing Chen
College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Science, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorAbstract
Cellular proteins are dynamically regulated in response to environmental stimuli. Conventional proteomics compares the entire proteome in different cellular states to identify differentially expressed proteins, which suffers from limited sensitivity for analyzing acute and subtle changes. To address this challenge, nascent proteomics has been developed, which selectively analyzes the newly synthesized proteins, thus offering a more sensitive and timely insight into the dynamic changes of the proteome. In this Minireview, we discuss recent advancements in nascent proteomics, with an emphasis on methodological developments. Also, we delve into the current challenges and provide an outlook on the future prospects of this exciting field.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1N. Fortelny, C. M. Overall, P. Pavlidis, G. V. C. Freue, Nature 2017, 547, E19–E20.
- 2Y. Liu, A. Beyer, R. Aebersold, Cell 2016, 165, 535–550.
- 3R. Aebersold, M. Mann, Nature 2003, 422, 198–207.
- 4M. Mann, Nat. Rev. Mol. Cell Biol. 2006, 7, 952–958.
- 5O. T. Schubert, H. L. Röst, B. C. Collins, G. Rosenberger, R. Aebersold, Nat. Protoc. 2017, 12, 1289–1294.
- 6S. E. Stone, W. S. Glenn, G. D. Hamblin, D. A. Tirrell, Curr. Opin. Chem. Biol. 2017, 36, 50–57.
- 7W. van Bergen, A. J. R. Heck, M. P. Baggelaar, Curr. Opin. Chem. Biol. 2022, 66, 102074.
- 8B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, M. Selbach, Nature 2011, 473, 337–342.
- 9A. Shevchenko, I. Chernushevich, W. Ens, K. G. Standing, B. Thomson, M. Wilm, M. Mann, Rapid Commun. Mass Spectrom. 1997, 11, 1015–1024.
10.1002/(SICI)1097-0231(19970615)11:9<1015::AID-RCM958>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 10S. Uttenweiler-Joseph, G. Neubauer, S. Christoforidis, M. Zerial, M. Wilm, Proteomics 2001, 1, 668–682.
- 11S.-E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey, M. Mann, Mol. Cell. Proteomics 2002, 1, 376–386.
- 12X. Chen, S. Wei, Y. Ji, X. Guo, F. Yang, Proteomics 2015, 15, 3175–3192.
- 13M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin, N. Rajewsky, Nature 2008, 455, 58–63.
- 14A. R. Dörrbaum, B. Alvarez-Castelao, B. Nassim-Assir, J. D. Langer, E. M. Schuman, eLife 2020, 9, e52939.
- 15T. Mathieson, H. Franken, J. Kosinski, N. Kurzawa, N. Zinn, G. Sweetman, D. Poeckel, V. S. Ratnu, M. Schramm, I. Becher, M. Steidel, K.-M. Noh, G. Bergamini, M. Beck, M. Bantscheff, M. M. Savitski, Nat. Commun. 2018, 9, 689.
- 16M. M. Savitski, N. Zinn, M. Faelth-Savitski, D. Poeckel, S. Gade, I. Becher, M. Muelbaier, A. J. Wagner, K. Strohmer, T. Werner, S. Melchert, M. Petretich, A. Rutkowska, J. Vappiani, H. Franken, M. Steidel, G. M. Sweetman, O. Gilan, E. Y. N. Lam, M. A. Dawson, R. K. Prinjha, P. Grandi, G. Bergamini, M. Bantscheff, Cell 2018, 173, 260–274.
- 17K. Klann, G. Tascher, C. Münch, Mol. Cell 2020, 77, 913–925.
- 18J. Ling, N. Reynolds, M. Ibba, Annu. Rev. Microbiol. 2009, 63, 61–78.
- 19J. C. M. van Hest, K. L. Kiick, D. A. Tirrell, J. Am. Chem. Soc. 2000, 122, 1282–1288.
- 20K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2002, 99, 19–24.
- 21D. C. Dieterich, A. J. Link, J. Graumann, D. A. Tirrell, E. M. Schuman, Proc. Natl. Acad. Sci. USA 2006, 103, 9482–9487.
- 22Z. Li, K. Liu, P. Xu, J. Yang, J. Proteome Res. 2022, 21, 1349–1358.
- 23K. Eichelbaum, M. Winter, M. B. Diaz, S. Herzig, J. Krijgsveld, Nat. Biotechnol. 2012, 30, 984–990.
- 24G. Zhang, H. Bowling, N. Hom, K. Kirshenbaum, E. Klann, M. V. Chao, T. A. Neubert, J. Proteome Res. 2014, 13, 5707–5714.
- 25X. Cao, A. Khitun, C. M. Harold, C. J. Bryant, S.-J. Zheng, S. J. Baserga, S. A. Slavoff, Nat. Chem. Biol. 2022, 18, 643–651.
- 26F. Kleinpenning, B. Steigenberger, W. Wu, A. J. R. Heck, Nat. Commun. 2020, 11, 3244.
- 27J. D. Bagert, Y. J. Xie, M. J. Sweredoski, Y. Qi, S. Hess, E. M. Schuman, D. A. Tirrell, Mol. Cell. Proteomics 2014, 13, 1352–1358.
- 28V. Liang, M. Ullrich, H. Lam, Y. L. Chew, S. Banister, X. Song, T. Zaw, M. Kassiou, J. Götz, H. R. Nicholas, Cell. Mol. Life Sci. 2014, 71, 3339–3361.
- 29S. Calve, A. J. Witten, A. R. Ocken, T. L. Kinzer-Ursem, Sci. Rep. 2016, 6, 32377.
- 30N. D. Tivendale, R. Fenske, O. Duncan, A. H. Millar, Plant J. 2021, 107, 1260–1276.
- 31K. Y. G. Choi, D. N. D. Lippert, P. Ezzatti, N. Mookherjee, J. Immunol. Methods 2012, 382, 189–195.
- 32H. L. Bowling, A. Kasper, C. Patole, J. P. Venkatasubramani, S. P. Leventer, E. Carmody, K. Sharp, E. Berry-Kravis, K. Kirshenbaum, E. Klann, A. Bhattacharya, J. Proteome Res. 2020, 19, 3856–3866.
- 33A. J. M. Howden, V. Geoghegan, K. Katsch, G. Efstathiou, B. Bhushan, O. Boutureira, B. Thomas, D. C. Trudgian, B. M. Kessler, D. C. Dieterich, Nat. Methods 2013, 10, 343–346.
- 34Y. Ma, D. B. Mcclatchy, S. Barkallah, W. W. Wood, J. R. Yates, J. Proteome Res. 2017, 16, 2213–2220.
- 35D. A. Rothenberg, J. M. Taliaferro, S. M. Huber, T. J. Begley, P. C. Dedon, F. M. White, iScience 2018, 9, 367–381.
- 36E. McShane, C. Sin, H. Zauber, J. N. Wells, N. Donnelly, X. Wang, J. Hou, W. Chen, Z. Storchova, J. A. Marsh, A. Valleriani, M. Selbach, Cell 2016, 167, 803–815.
- 37K. E. Beatty, J. C. Liu, F. Xie, D. C. Dieterich, E. M. Schuman, Q. Wang, D. A. Tirrell, Angew. Chem. Int. Ed. 2006, 45, 7364–7367.
- 38F. I. Hinz, D. C. Dieterich, D. A. Tirrell, E. M. Schuman, ACS Chem. Neurosci. 2012, 3, 40–49.
- 39D. C. Dieterich, J. J. L. Hodas, G. Gouzer, I. Y. Shadrin, J. T. Ngo, A. Triller, D. A. Tirrell, E. M. Schuman, Nat. Neurosci. 2010, 13, 897–905.
- 40E. Couradeau, J. Sasse, D. Goudeau, N. Nath, T. C. Hazen, B. P. Bowen, R. Chakraborty, R. R. Malmstrom, T. R. Northen, Nat. Commun. 2019, 10, 2770.
- 41R. Aviner, Comput. Struct. Biotechnol. J. 2020, 18, 1074–1083.
- 42D. Nathans, Proc. Natl. Acad. Sci. USA 1964, 51, 585–592.
- 43J. Uchiyama, R. Roy, D. O. Wang, K. Morikawa, Y. Kawahara, M. Iwasaki, C. Yoshino, Y. Mishima, Y. Ishihama, K. Imami, iScience 2022, 25, 104516.
- 44E. K. Schmidt, G. Clavarino, M. Ceppi, P. Pierre, Nat. Methods 2009, 6, 275–277.
- 45R. J. Argüello, A. J. Combes, R. Char, J.-P. Gigan, A. I. Baaziz, E. Bousiquot, V. Camosseto, B. Samad, J. Tsui, P. Yan, S. Boissonneau, D. Figarella-Branger, E. Gatti, E. Tabouret, M. F. Krummel, P. Pierre, Cell Metab. 2020, 32, 1063–1075.
- 46S. R. Starck, H. M. Green, J. Alberola-Ila, R. W. Roberts, Chem. Biol. 2004, 11, 999–1008.
- 47R. Aviner, T. Geiger, O. Elroy-Stein, Genes Dev. 2013, 27, 1834–1844.
- 48J. Liu, Y. Xu, D. Stoleru, A. Salic, Proc. Natl. Acad. Sci. USA 2012, 109, 413–418.
- 49C. M. Forester, Q. Zhao, N. J. Phillips, A. Urisman, R. J. Chalkley, J. A. Oses-Prieto, L. Zhang, D. Ruggero, A. L. Burlingame, Proc. Natl. Acad. Sci. USA 2018, 115, 2353–2358.
- 50J. Uchiyama, Y. Ishihama, K. Imami, J. Biochem. 2021, 169, 227–236.
- 51J. Ge, C. W. Zhang, X. W. Ng, B. Peng, S. Pan, S. Du, D. Wang, L. Li, K. L. Lim, T. Wohland, S. Q. Yao, Angew. Chem. Int. Ed. 2016, 55, 4933–4937.
- 52R. Marciano, G. Leprivier, B. Rotblat, Cell Death Dis. 2018, 9, 39.
- 53S. U. Enam, B. Zinshteyn, D. H. Goldman, M. Cassani, N. M. Livingston, G. Seydoux, R. Green, eLife 2020, 9, e60303.
- 54F. Buhr, J. Kohl-Landgraf, S. Tomdieck, C. Hanus, D. Chatterjee, A. Hegelein, E. M. Schuman, J. Wachtveitl, H. Schwalbe, Angew. Chem. Int. Ed. 2015, 54, 3717–3721.
- 55I. Elamri, M. Heumüller, L. Herzig, E. Stirnal, J. Wachtveitl, E. M. Schuman, H. Schwalbe, ChemBioChem 2018, 19, 2458–2464.
- 56T. Ko, M. M. Oliveira, J. M. Alapin, J. Morstein, E. Klann, D. Trauner, J. Am. Chem. Soc. 2022, 144, 21494–21501.
- 57S. M. Adelmund, E. R. Ruskowitz, P. E. Farahani, J. V. Wolfe, C. A. DeForest, ACS Chem. Biol. 2018, 13, 573–577.
- 58I. C. Tanrikulu, E. Schmitt, Y. Mechulam, W. A. Goddard, D. A. Tirrell, Proc. Natl. Acad. Sci. USA 2009, 106, 15285–15290.
- 59J. T. Ngo, J. A. Champion, A. Mahdavi, I. C. Tanrikulu, K. E. Beatty, R. E. Connor, T. H. Yoo, D. C. Dieterich, E. M. Schuman, D. A. Tirrell, Nat. Chem. Biol. 2009, 5, 715–717.
- 60M. Grammel, M. M. Zhang, H. C. Hang, Angew. Chem. Int. Ed. 2010, 49, 5970–5974.
- 61A. Mahdavi, J. Szychowski, J. T. Ngo, M. J. Sweredoski, R. L. J. Graham, S. Hess, O. Schneewind, S. K. Mazmanian, D. A. Tirrell, Proc. Natl. Acad. Sci. USA 2014, 111, 433–438.
- 62J. T. Ngo, E. M. Schuman, D. A. Tirrell, Proc. Natl. Acad. Sci. USA 2013, 110, 4992–4997.
- 63I. Erdmann, K. Marter, O. Kobler, S. Niehues, J. Abele, A. Müller, J. Bussmann, E. Storkebaum, T. Ziv, U. Thomas, D. C. Dieterich, Nat. Commun. 2015, 6, 7521.
- 64B. Alvarez-Castelao, C. T. Schanzenbächer, C. Hanus, C. Glock, S. tom Dieck, A. R. Dörrbaum, I. Bartnik, B. Nassim-Assir, E. Ciirdaeva, A. Mueller, D. C. Dieterich, D. A. Tirrell, J. D. Langer, E. M. Schuman, Nat. Biotechnol. 2017, 35, 1196–1201.
- 65N. G. Azizian, D. K. Sullivan, L. Nie, S. Pardo, D. Molleur, J. Chen, S. T. Weintraub, Y. Li, J. Proteome Res. 2021, 20, 858–866.
- 66H. T. Evans, L.-G. Bodea, J. Götz, eLife 2020, 9, e52990.
- 67M. Grammel, P. D. Dossa, E. Taylor-Salmon, H. C. Hang, Chem. Commun. 2012, 48, 1473–1474.
- 68F. Truong, T. H. Yoo, T. J. Lampo, D. A. Tirrell, J. Am. Chem. Soc. 2012, 134, 8551–8556.
- 69K. P. Yuet, M. K. Doma, J. T. Ngo, M. J. Sweredoski, R. L. J. Graham, A. Moradian, S. Hess, E. M. Schuman, P. W. Sternberg, D. A. Tirrell, Proc. Natl. Acad. Sci. USA 2015, 112, 2705–2710.
- 70A. C. Yang, H. du Bois, N. Olsson, D. Gate, B. Lehallier, D. Berdnik, K. D. Brewer, C. R. Bertozzi, J. E. Elias, T. Wyss-Coray, J. Am. Chem. Soc. 2018, 140, 7046–7051.
- 71T. S. Elliott, F. M. Townsley, A. Bianco, R. J. Ernst, A. Sachdeva, S. J. Elsässer, L. Davis, K. Lang, R. Pisa, S. Greiss, K. S. Lilley, J. W. Chin, Nat. Biotechnol. 2014, 32, 465–472.
- 72K. Lang, J. W. Chin, Chem. Rev. 2014, 114, 4764–4806.
- 73T. S. Elliott, A. Bianco, F. M. Townsley, S. D. Fried, J. W. Chin, Cell Chem. Biol. 2016, 23, 805–815.
- 74T. P. Krogager, R. J. Ernst, T. S. Elliott, L. Calo, V. Beránek, E. Ciabatti, M. G. Spillantini, M. Tripodi, M. H. Hastings, J. W. Chin, Nat. Biotechnol. 2018, 36, 156–159.
- 75Z. Li, Y. Zhu, Y. Sun, K. Qin, W. Liu, W. Zhou, X. Chen, ACS Chem. Biol. 2016, 11, 3273–3277.
- 76Y. Li, W. Liu, Q. Tang, X. Fan, Y. Hao, L. Gao, Z. Li, B. Cheng, X. Chen, ACS Chem. Biol. 2019, 14, 182–185.
- 77R. M. Barrett, H. Liu, H. Jin, R. H. Goodman, M. S. Cohen, ACS Chem. Biol. 2016, 11, 1532–1536.
- 78J. T. Ngo, B. M. Babin, J. A. Champion, E. M. Schuman, D. A. Tirrell, ACS Chem. Biol. 2012, 7, 1326–1330.
- 79A. Mahdavi, T. H. Segall-Shapiro, S. Kou, G. A. Jindal, K. G. Hoff, S. Liu, M. Chitsaz, R. F. Ismagilov, J. J. Silberg, D. A. Tirrell, J. Am. Chem. Soc. 2013, 135, 2979–2982.
- 80W. Liu, Q. Tang, L. Meng, S. Hu, D. Sun, S. Li, P. Dai, X. Chen, Angew. Chem. Int. Ed. 2023, 62, e202214010.
- 81J. D. Chapman, D. R. Goodlett, C. D. Masselon, Mass Spectrom. Rev. 2014, 33, 452–470.
- 82B. J. Ignacio, J. Dijkstra, N. Mora, E. F. J. Slot, M. J. van Weijsten, E. Storkebaum, M. Vermeulen, K. M. Bonger, Nat. Commun. 2023, 14, 3367.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.