Mechanistic Understanding of Efficient Polyethylene Hydrocracking over Two-Dimensional Platinum-Anchored Tungsten Trioxide
Qimin Zhou
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Deliang Wang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Qingyue Wang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorDr. Kailin He
Key Laboratory of Hunan Province for the Synergetic Control and Resource Reuse of the Multi-Pollutants of Flue Gas, National Sintering and Pelletizing Equipment System Engineering Research Center, Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, Hunan P. R. China
Search for more papers by this authorProf. Dr. Khak Ho Lim
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorProf. Dr. Xuan Yang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorProf. Dr. Wen-Jun Wang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorProf. Dr. Bo-Geng Li
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Pingwei Liu
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorQimin Zhou
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Deliang Wang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Qingyue Wang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorDr. Kailin He
Key Laboratory of Hunan Province for the Synergetic Control and Resource Reuse of the Multi-Pollutants of Flue Gas, National Sintering and Pelletizing Equipment System Engineering Research Center, Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, Hunan P. R. China
Search for more papers by this authorProf. Dr. Khak Ho Lim
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorProf. Dr. Xuan Yang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorProf. Dr. Wen-Jun Wang
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorProf. Dr. Bo-Geng Li
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Pingwei Liu
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027 Zhejiang, P. R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000 Zhejiang, P. R. China
Search for more papers by this authorAbstract
Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO3) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200–250 °C with a liquid fuel (C5–18) formation rate up to 1456 gproducts ⋅ gmetal species−1 ⋅ h−1. The reaction pathway over the bifunctional 2D Pt/WO3 is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO3 nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C−C cleavage on WO3 are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO3 catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202305644-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. M. Garcia, M. L. Robertson, Science 2017, 358, 870–872.
- 2J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, K. L. Law, Science 2015, 347, 768–771.
- 3S. Liu, P. A. Kots, B. C. Vance, A. Danielson, D. G. Vlachos, Sci. Adv. 2021, 7, eabf8283.
- 4G. Celik, R. M. Kennedy, R. A. Hackler, M. Ferrandon, A. Tennakoon, S. Patnaik, A. M. LaPointe, S. C. Ammal, A. Heyden, F. A. Perras, M. Pruski, S. L. Scott, K. R. Poeppelmeier, A. D. Sadow, M. Delferro, ACS Cent. Sci. 2019, 5, 1795–1803.
- 5A. Tennakoon, X. Wu, A. L. Paterson, S. Patnaik, Y. Pei, A. M. LaPointe, S. C. Ammal, R. A. Hackler, A. Heyden, I. I. Slowing, G. W. Coates, M. Delferro, B. Peters, W. Huang, A. D. Sadow, F. A. Perras, Nat. Catal. 2020, 3, 893–901.
- 6B. Zhang, W. Zhou, J. Zhang, Z. Gao, D. Cheng, L. Tang, X. Liu, Y. Song, C. Dong, Y. Xu, J. Yan, M. Peng, H. Liu, M. Douthwaite, M. Wang, D. Ma, CCS Chem. 2021, 4, 2639–2650.
- 7W. Zhang, S. Kim, L. Wahl, R. Khare, L. Hale, J. Hu, D. M. Camaioni, O. Y. Gutiérrez, Y. Liu, J. A. Lercher, Science 2023, 379, 807–811.
- 8A. Azam, J. Kim, J. Park, T. G. Novak, A. P. Tiwari, S. H. Song, B. Kim, S. Jeon, Nano Lett. 2018, 18, 5646–5651.
- 9Q. Hou, M. Zhen, H. Qian, Y. Nie, X. Bai, T. Xia, M. Laiq Ur Rehman, Q. Li, M. Ju, Cell Rep. Phys. Sci. 2021, 2, 100514.
- 10Y. Nakaji, M. Tamura, S. Miyaoka, S. Kumagai, M. Tanji, Y. Nakagawa, T. Yoshioka, K. Tomishige, Appl. Catal. B 2021, 285, 119805.
- 11B. C. Vance, P. A. Kots, C. Wang, Z. R. Hinton, C. M. Quinn, T. H. Epps, L. T. J. Korley, D. G. Vlachos, Appl. Catal. B 2021, 299, 120483.
- 12R. Portela, S. Perez-Ferreras, A. Serrano-Lotina, M. A. Bañares, Front. Chem. Sci. Eng. 2018, 12, 509–536.
- 13M. A. Bañares, Adv. Mater. 2011, 23, 5293–5301.
- 14J. E. Rorrer, G. T. Beckham, Y. Román-Leshkov, JACS Au 2021, 1, 8–12.
- 15A. Akah, J. Hernandez-Martinez, C. Rallan, A. Garforth, Chem. Eng. Trans. 2015, 43, 2395–2400.
- 16A. Bin Jumah, V. Anbumuthu, A. A. Tedstone, A. A. Garforth, Ind. Eng. Chem. Res. 2019, 58, 20601–20609.
- 17W. Ding, J. Liang, L. L. Anderson, Energy Fuels 1997, 11, 1219–1224.
- 18S. Uçar, S. Karagöz, T. Karayildirim, J. Yanik, Polym. Degrad. Stab. 2002, 75, 161–171.
- 19S. Karagöz, J. Yanik, S. Uçar, C. Song, Energy Fuels 2002, 16, 1301–1308.
- 20D. Wang, H. Li, N. Du, W. Hou, Adv. Funct. Mater. 2021, 31, 2009770.
- 21J. Qu, Y. Wang, X. Mu, J. Hu, B. Zeng, Y. Lu, M. Sui, R. Li, C. Li, Adv. Mater. 2022, 34, 2203320.
- 22X.-Y. Tang, M.-F. Li, L.-F. Gao, H. Yan, S.-M. Deng, J.-B. Fan, M.-S. Zheng, S.-L. Deng, Q.-Y. Zhang, S.-Y. Xie, L.-S. Zheng, Adv. Mater. Interfaces 2019, 6, 1901122.
- 23K. Kalantar-zadeh, A. Vijayaraghavan, M.-H. Ham, H. Zheng, M. Breedon, M. S. Strano, Chem. Mater. 2010, 22, 5660–5666.
- 24F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, J. Am. Chem. Soc. 2014, 136, 6826–6829.
- 25H. Cheng, M. Klapproth, A. Sagaltchik, S. Li, A. Thomas, J. Mater. Chem. A 2018, 6, 2249–2256.
- 26W. X. Li, Z. Y. Liu, S. C. Yang, J. N. Wu, L. Sun, E. G. Ma, H. G. Yang, X. Guo, Sci. China Mater. 2022, 65, 3435–3441.
- 27J. Park, S. Lee, H.-E. Kim, A. Cho, S. Kim, Y. Ye, J. W. Han, H. Lee, J. H. Jang, J. Lee, Angew. Chem. Int. Ed. 2019, 58, 16038–16042.
- 28G. Guan, J. Xia, S. Liu, Y. Cheng, S. Bai, S. Y. Tee, Y.-W. Zhang, M.-Y. Han, Adv. Mater. 2017, 29, 1700326.
- 29M. Sun, L. Zhu, W. Liu, X. Zhao, Y. Zhang, H. Luo, G. Miao, S. Li, S. Yin, L. Kong, Sustain. Energy Fuels 2022, 6, 271–275.
- 30H. L. Coonradt, W. E. Garwood, Ind. Eng. Chem. Process Des. Dev. 1964, 3, 38–45.
- 31J. V. Gulmine, P. R. Janissek, H. M. Heise, L. Akcelrud, Polym. Test. 2002, 21, 557–563.
- 32L. Senak, M. A. Davies, R. Mendelsohn, J. Phys. Chem. 1991, 95, 2565–2571.
- 33L. Yang, F. Zhang, T. Endo, T. Hirotsu, Macromolecules 2003, 36, 4709–4718.
- 34L.-S. Shi, L.-Y. Wang, Y.-N. Wang, Eur. Polym. J. 2006, 42, 1625–1633.
- 35S. S. Arora, D. L. S. Nieskens, A. Malek, A. Bhan, Nat. Catal. 2018, 1, 666–672.
- 36J. Duan, W. Chen, C. Wang, L. Wang, Z. Liu, X. Yi, W. Fang, H. Wang, H. Wei, S. Xu, Y. Yang, Q. Yang, Z. Bao, Z. Zhang, Q. Ren, H. Zhou, X. Qin, A. Zheng, F.-S. Xiao, J. Am. Chem. Soc. 2022, 144, 14269–14277.
- 37S. Triwahyono, A. A. Jalil, H. Hattori, J. Nat. Gas Chem. 2007, 16, 252–257.
- 38A. A. Koverga, E. Flórez, C. Jimenez-Orozco, J. A. Rodriguez, Phys. Chem. Chem. Phys. 2021, 23, 20255–20267.
- 39J. Y. Luo, X. Chen, W. Li, W. Deng, W. Li, H. Wu, L. Zhu, Q. Zeng, Appl. Phys. Lett. 2013, 102, 113104.
- 40Z.-W. Wei, H.-J. Wang, C. Zhang, K. Xu, X.-L. Lu, T.-B. Lu, Angew. Chem. Int. Ed. 2021, 60, 16622–16627.
- 41R. Prins, Chem. Rev. 2012, 112, 2714–2738.
- 42H. Wang, R. Fan, J. Miao, J. Chen, S. Mao, J. Deng, Y. Wang, J. Mater. Chem. A 2018, 6, 6780–6784.
- 43A. Hjelm, C. G. Granqvist, J. M. Wills, Phys. Rev. B 1996, 54, 2436–2445.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.