A Quadruple-Borylated Multiple-Resonance Emitter with para/meta Heteroatomic Patterns for Narrowband Orange-Red Emission
Dr. Xiao-Chun Fan
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorFeng Huang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorHao Wu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorHui Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorYing-Chun Cheng
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorJia Yu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Kai Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiao-Hong Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorDr. Xiao-Chun Fan
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorFeng Huang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorHao Wu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorHui Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorYing-Chun Cheng
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorJia Yu
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Kai Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiao-Hong Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123 P. R. China
Search for more papers by this authorAbstract
Hindered by spectral broadening issues with redshifted emission, long-wavelength (e.g., maxima beyond 570 nm) multiple resonance (MR) emitters with full width at half maxima (FWHMs) below 20 nm remain absent. Herein, by strategically embedding diverse boron (B)/nitrogen (N) atomic pairs into a polycyclic aromatic hydrocarbon (PAH) skeleton, we propose a hybrid pattern for the construction of a long-wavelength narrowband MR emitter. The proof-of-concept emitter B4N6-Me realized orange-red emission with an extremely small FWHM of 19 nm (energy unit: 70 meV), representing the narrowest FWHM among all reported long-wavelength MR emitters. Theoretical calculations revealed that the cooperation of the applied para B-π-N and para B-π-B/N-π-N patterns is complementary, which gives rise to both narrowband and redshift characteristics. The corresponding organic light-emitting diode (OLED) employing B4N6-Me achieved state-of-the-art performance, e.g., a narrowband orange-red emission with an FWHM of 27 nm (energy unit: 99 meV), an excellent maximum external quantum efficiency (EQE) of 35.8 %, and ultralow efficiency roll-off (EQE of 28.4 % at 1000 cd m−2). This work provides new insights into the further molecular design and synthesis of long-wavelength MR emitters.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202305580-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Zeng, L. Wang, H. Dai, T. Huang, M. Du, D. Wang, D. Zhang, L. Duan, Adv. Mater. 2023, 35, e2211316;
- 1bH. L. Lee, S. O. Jeon, I. Kim, S. C. Kim, J. Lim, J. Kim, S. Park, J. Chwae, W. J. Son, H. Choi, J. Y. Lee, Adv. Mater. 2022, 34, 2202464;
- 1cX. Zeng, X. Wang, Y. Zhang, G. Meng, J. Wei, Z. Liu, X. Jia, G. Li, L. Duan, D. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202117181;
- 1dZ. Wang, Z. Yan, Q. Chen, X. Song, J. Liang, K. Ye, Z. Zhang, H. Bi, Y. Wang, ACS Appl. Mater. Interfaces 2023, 15, 14605–14613.
- 2
- 2aM. Hirai, N. Tanaka, M. Sakai, S. Yamaguchi, Chem. Rev. 2019, 119, 8291–8331;
- 2bA. Borissov, Y. K. Maurya, L. Moshniaha, W. S. Wong, M. Zyla-Karwowska, M. Stepien, Chem. Rev. 2022, 122, 565–788.
- 3T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
- 4K. R. Naveen, H. I. Yang, J. H. Kwon, Commun. Chem. 2022, 5, 149.
- 5Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–683.
- 6
- 6aK. R. Naveen, H. Y. A. Lee, L. H. Seung, Y. H. Jung, C. P. K. Prabhu, S. Muruganantham, J. H. Kwon, Chem. Eng. J. 2023, 451, 138498;
- 6bK. Stavrou, S. M. Suresh, D. Hall, A. Danos, N. A. Kukhta, A. M. Z. Slawin, S. Warriner, D. Beljonne, Y. Olivier, A. Monkman, E. Zysman-Colman, Adv. Opt. Mater. 2022, 10, 2200688;
- 6cM. Nagata, H. Min, E. Watanabe, H. Fukumoto, Y. Mizuhata, N. Tokitoh, T. Agou, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 20280–20285;
- 6dS. H. Han, J. H. Jeong, J. W. Yoo, J. Y. Lee, J. Mater. Chem. C 2019, 7, 3082–3089;
- 6eB. Lei, Z. Huang, S. Li, J. Liu, Z. Bin, J. You, Angew. Chem. Int. Ed. 2023, 62, e202218405;
- 6fS. Oda, B. Kawakami, M. Horiuchi, Y. Yamasaki, R. Kawasumi, T. Hatakeyama, Adv. Sci. 2023, 10, 2205070;
- 6gK. R. Naveen, H. Lee, R. Braveenth, D. Karthik, K. J. Yang, S. J. Hwang, J. H. Kwon, Adv. Funct. Mater. 2022, 32, 2110356;
- 6hK. R. Naveen, H. Lee, R. Braveenth, K. Joon Yang, S. Jae Hwang, J. Hyuk Kwon, Chem. Eng. J. 2022, 432, 134381;
- 6iI. S. Park, M. Yang, H. Shibata, N. Amanokura, T. Yasuda, Adv. Mater. 2022, 34, 2107951;
- 6jX. Lv, J. Miao, M. Liu, Q. Peng, C. Zhong, Y. Hu, X. Cao, H. Wu, Y. Yang, C. Zhou, J. Ma, Y. Zou, C. Yang, Angew. Chem. Int. Ed. 2022, 61, e202201588;
- 6kH. Tanaka, S. Oda, G. Ricci, H. Gotoh, K. Tabata, R. Kawasumi, D. Beljonne, Y. Olivier, T. Hatakeyama, Angew. Chem. Int. Ed. 2021, 60, 17910–17914.
- 7S. Uemura, S. Oda, M. Hayakawa, R. Kawasumi, N. Ikeda, Y. T. Lee, C. Y. Chan, Y. Tsuchiya, C. Adachi, T. Hatakeyama, J. Am. Chem. Soc. 2023, 145, 1505–1511.
- 8M. Yang, I. S. Park, T. Yasuda, J. Am. Chem. Soc. 2020, 142, 19468–19472.
- 9Y. Zhang, D. Zhang, T. Huang, A. J. Gillett, Y. Liu, D. Hu, L. Cui, Z. Bin, G. Li, J. Wei, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 20498–20503.
- 10Y. Zou, J. Hu, M. Yu, J. Miao, Z. Xie, Y. Qiu, X. Cao, C. Yang, Adv. Mater. 2022, 34, 2201442.
- 11X. C. Fan, K. Wang, Y. Z. Shi, J. X. Chen, F. Huang, H. Wang, Y. N. Hu, Y. Tsuchiya, X. M. Ou, J. Yu, C. Adachi, X. H. Zhang, Adv. Opt. Mater. 2022, 10, 2101789.
- 12
- 12aH. Chen, T. Fan, G. Zhao, D. Zhang, G. Li, W. Jiang, L. Duan, Y. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202300934;
- 12bK. R. Naveen, S. J. Hwang, H. Lee, J. H. Kwon, Adv. Electron. Mater. 2022, 8, 2101114;
- 12cX. Cai, Y. Xu, Y. Pan, L. Li, Y. Pu, X. Zhuang, C. Li, Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202216473;
- 12dY. N. Wang, K. Y. Zhang, F. Chen, X. D. Wang, Q. Q. Yang, S. M. Wang, S. Y. Shao, L. X. Wang, Chin. J. Chem. 2022, 40, 2671–2677;
- 12eM. Yang, S. Shikita, H. Min, I. S. Park, H. Shibata, N. Amanokura, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 23142–23147.
- 13H. J. Kim, T. Yasuda, Adv. Opt. Mater. 2022, 10, 2201714.
- 14S. Oda, T. Hatakeyama, Bull. Chem. Soc. Jpn. 2021, 94, 950–960.
- 15
- 15aK. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195–1198;
- 15bS. Oda, W. Kumano, T. Hama, R. Kawasumi, K. Yoshiura, T. Hatakeyama, Angew. Chem. Int. Ed. 2021, 60, 2882–2886;
- 15cS. Oda, K. Ueura, B. Kawakami, T. Hatakeyama, Org. Lett. 2020, 22, 700–704;
- 15dS. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka, T. Hatakeyama, J. Am. Chem. Soc. 2022, 144, 106–112.
- 16
- 16aH. Noda, X. K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J. L. Bredas, C. Adachi, Nat. Mater. 2019, 18, 1084–1090;
- 16bD. Zhang, X. Song, A. J. Gillett, B. H. Drummond, S. T. E. Jones, G. Li, H. He, M. Cai, D. Credgington, L. Duan, Adv. Mater. 2020, 32, 1908355.
- 17S. Jiang, Y. Yu, D. Li, Z. Chen, Y. He, M. Li, G. X. Yang, W. Qiu, Z. Yang, Y. Gan, J. Lin, Y. Ma, S. J. Su, Angew. Chem. Int. Ed. 2023, 62, e202218892.
- 18J. R. Reimers, J. Chem. Phys. 2001, 115, 9103–9109.
- 19
- 19aX. C. Fan, K. Wang, Y. Z. Shi, Y. C. Cheng, Y. T. Lee, J. Yu, X. K. Chen, C. Adachi, X. H. Zhang, Nat. Photonics 2023, 17, 280–285;
- 19bY. Zhang, G. Li, L. Wang, T. Huang, J. Wei, G. Meng, X. Wang, X. Zeng, D. Zhang, L. Duan, Angew. Chem. Int. Ed. 2022, 61, 202202380;
- 19cJ. Liu, Y. Zhu, T. Tsuboi, C. Deng, W. Lou, D. Wang, T. Liu, Q. Zhang, Nat. Commun. 2022, 13, 4876.
- 20
- 20aS. O. Jeon, K. H. Lee, J. S. Kim, S. G. Ihn, Y. S. Chung, J. W. Kim, H. Lee, S. Kim, H. Choi, J. Y. Lee, Nat. Photonics 2021, 15, 208–215;
- 20bC.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203–207.
- 21R. Englman, J. Jortner, Mol. Phys. 1970, 18, 145–164.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.