An Experimental and Computational Investigation Rules Out Direct Nucleophilic Addition on the N2 Ligand in Manganese Dinitrogen Complex [Cp(CO)2Mn(N2)]
Dr. Quentin Le Dé
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Amal Bouammali
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Christian Bijani
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Laure Vendier
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Iker del Rosal
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Dr. Dmitry A. Valyaev
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorCorresponding Author
Dr. Chiara Dinoi
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Dr. Antoine Simonneau
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Quentin Le Dé
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Amal Bouammali
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Christian Bijani
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Laure Vendier
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorDr. Iker del Rosal
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Dr. Dmitry A. Valyaev
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorCorresponding Author
Dr. Chiara Dinoi
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Dr. Antoine Simonneau
LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, 31077 Toulouse cedex 4, France
Search for more papers by this authorAbstract
We have re-examined the reactivity of the manganese dinitrogen complex [Cp(CO)2Mn(N2)] (1, Cp=η5-cyclopentadienyl, C5H5) with phenylithium (PhLi). By combining experiment and density functional theory (DFT), we have found that, unlike previously reported, the direct nucleophilic attack of the carbanion onto coordinated dinitrogen does not occur. Instead, PhLi reacts with one of the CO ligands to provide an anionic acylcarbonyl dinitrogen metallate [Cp(CO)(N2)MnCOPh]Li (3) that is stable only below −40 °C. Full characterization of 3 (including single crystal X-ray diffraction) was performed. This complex decomposes quickly above −20 °C with N2 loss to give a phenylate complex [Cp(CO)2MnPh]Li (2). The latter compound was erroneously formulated as an anionic diazenido compound [Cp(CO)2MnN(Ph)=N]Li in earlier reports, ruling out the claimed and so-far unique behavior of the N2 ligand in 1. DFT calculations were run to explore both the hypothesized and the experimentally verified reactivity of 1 with PhLi and are fully consistent with our results. Direct attack of a nucleophile on metal-coordinated N2 remains to be demonstrated.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202305235-sup-0001-Geometries-N2_Manganese.xyz108.5 KB | Supporting Information |
ange202305235-sup-0001-misc_information.pdf4.3 MB | Supporting Information |
ange202305235-sup-0001-PubliABN280421fin.cif183.3 KB | Supporting Information |
ange202305235-sup-0001-publiQLDN091122new.cif895.9 KB | Supporting Information |
ange202305235-sup-0001-PubliQLDN171222new.cif1 MB | Supporting Information |
ange202305235-sup-0001-PubliQLDN251122final.cif11.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. Einsle, D. C. Rees, Chem. Rev. 2020, 120, 4969–5004;
- 1bL. C. Seefeldt, Z.-Y. Yang, D. A. Lukoyanov, D. F. Harris, D. R. Dean, S. Raugei, B. M. Hoffman, Chem. Rev. 2020, 120, 5082–5106;
- 1cB. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean, L. C. Seefeldt, Chem. Rev. 2014, 114, 4041–4062.
- 2
- 2aM. Appl, Ullmann's Encyclopedia of Industrial Chemistry, Vol. 3, Wiley-VCH, Weinheim, 2011, pp. 139–225;
- 2bV. Smil, Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production, MIT Press, Cambridge, 2001;
- 2cJ. R. Jennings, Catalytic Ammonia Synthesis: Fundamentals and Practice, Springer, New York, 1991.
10.1007/978-1-4757-9592-9 Google Scholar
- 3M. Appl, Ullmann's Encyclopedia of Industrial Chemistry, Vol. 3, Wiley-VCH, Weinheim, 2011, pp. 107–137.
- 4S. Kim, F. Loose, P. J. Chirik, Chem. Rev. 2020, 120, 5637–5681.
- 5
- 5aF. Masero, M. A. Perrin, S. Dey, V. Mougel, Chem. Eur. J. 2021, 27, 3892–3928;
- 5bD. Singh, W. R. Buratto, J. F. Torres, L. J. Murray, Chem. Rev. 2020, 120, 5517–5581;
- 5c Transition Metal-Dinitrogen Complexes: Preparation and Reactivity (Ed.: Y. Nishibayashi), Wiley-VCH, Weinheim, 2019;
10.1002/9783527344260 Google Scholar
- 5dM. D. Walter, in Advances in Organometallic Chemistry, Vol. 65 (Ed.: P. J. Pérez), Elsevier, Amsterdam, 2016, pp. 261–377;
- 5eP. J. Chirik, Dalton Trans. 2007, 16–25;
- 5fS. Gambarotta, J. Scott, Angew. Chem. Int. Ed. 2004, 43, 5298–5308;
- 5gB. A. MacKay, M. D. Fryzuk, Chem. Rev. 2004, 104, 385–402.
- 6Recent reviews:
- 6aY. Tanabe, Y. Nishibayashi, Chem. Soc. Rev. 2021, 50, 5201–5242;
- 6bM. J. Chalkley, M. W. Drover, J. C. Peters, Chem. Rev. 2020, 120, 5582–5636.
- 7
- 7aY. Tanabe, Y. Nishibayashi, Coord. Chem. Rev. 2019, 389, 73–93;
- 7bS. Bennaamane, M. F. Espada, A. Mulas, T. Personeni, N. Saffon-Merceron, M. Fustier-Boutignon, C. Bucher, N. Mézailles, Angew. Chem. Int. Ed. 2021, 60, 20210–20214.
- 8Borylenes and boryl radicals may react spontaneously with N2:
- 8aM.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Science 2018, 359, 896–900;
- 8bS. Bennaamane, B. Rialland, L. Khrouz, M. Fustier-Boutignon, C. Bucher, E. Clot, N. Mézailles, Angew. Chem. Int. Ed. 2023, 62, e202209102.
- 9S. F. McWilliams, D. L. J. Broere, C. J. V. Halliday, S. M. Bhutto, B. Q. Mercado, P. L. Holland, Nature 2020, 584, 221–226.
- 10T. Itabashi, K. Arashiba, A. Egi, H. Tanaka, K. Sugiyama, S. Suginome, S. Kuriyama, K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2022, 13, 6161.
- 11
- 11aZ.-J. Lv, J. Wei, W.-X. Zhang, P. Chen, D. Deng, Z.-J. Shi, Z. Xi, Natl. Sci. Rev. 2020, 7, 1564–1583;
- 11bM. Mori, J. Organomet. Chem. 2004, 689, 4210–4227;
- 11cM. Hidai, Y. Mizobe, Top. Organomet. Chem. 1999, 3, 227–241.
- 12S. J. K. Forrest, B. Schluschaß, E. Y. Yuzik-Klimova, S. Schneider, Chem. Rev. 2021, 121, 6522–6587.
- 13Selected examples:
- 13aV. W. Day, T. A. George, S. D. A. Iske, J. Am. Chem. Soc. 1975, 97, 4127–4128;
- 13bJ. Chatt, A. A. Diamantis, G. A. Heath, N. E. Hooper, G. J. Leigh, Chem. Soc. Dalton Trans. 1977, 688–697;
- 13cT. Yoshida, T. Adachi, T. Ueda, M. Kaminaka, N. Sasaki, T. Higuchi, T. Aoshima, I. Mega, Y. Mizobe, M. Hidai, Angew. Chem. Int. Ed. Engl. 1989, 28, 1040–1042;
- 13dJ. C. Peters, J.-P. F. Cherry, J. C. Thomas, L. Baraldo, D. J. Mindiola, W. M. Davis, C. C. Cummins, J. Am. Chem. Soc. 1999, 121, 10053–10067;
- 13eM. D. Fryzuk, S. A. Johnson, B. O. Patrick, A. Albinati, S. A. Mason, T. F. Koetzle, J. Am. Chem. Soc. 2001, 123, 3960–3973;
- 13fD. J. Knobloch, D. Benito-Garagorri, W. H. Bernskoetter, I. Keresztes, E. Lobkovsky, H. Toomey, P. J. Chirik, J. Am. Chem. Soc. 2009, 131, 14903–14912;
- 13gT. Kupfer, R. R. Schrock, J. Am. Chem. Soc. 2009, 131, 12829–12837.
- 14Selected examples:
- 14aG. E. Bossard, T. A. George, R. K. Lester, R. C. Tisdale, R. L. Turcotte, Inorg. Chem. 1985, 24, 1129–1132;
- 14bJ. Rittle, J. C. Peters, J. Am. Chem. Soc. 2016, 138, 4243–4248;
- 14cZ.-J. Lv, Z. Huang, W.-X. Zhang, Z. Xi, J. Am. Chem. Soc. 2019, 141, 8773–8777.
- 15Selected examples:
- 15aJ. J. Curley, E. L. Sceats, C. C. Cummins, J. Am. Chem. Soc. 2006, 128, 14036–14037;
- 15bJ. S. Figueroa, N. A. Piro, C. R. Clough, C. C. Cummins, J. Am. Chem. Soc. 2006, 128, 940–950;
- 15cI. Klopsch, M. Kinauer, M. Finger, C. Würtele, S. Schneider, Angew. Chem. Int. Ed. 2016, 55, 4786–4789.
- 16Selected example: P. C. Bevan, J. Chatt, G. J. Leigh, E. G. Leelamani, J. Organomet. Chem. 1977, 139, C59–C62.
- 17Selected example: H. Henderickx, G. Kwakkenbos, A. Peters, J. van der Spoel, K. de Vries, Chem. Commun. 2003, 2050–2051.
- 18Selected examples: Ref. 15c;
- 18aM. M. Guru, T. Shima, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 12316–12320;
- 18bF. Schendzielorz, M. Finger, J. Abbenseth, C. Würtele, V. Krewald, S. Schneider, Angew. Chem. Int. Ed. 2019, 58, 830–834.
- 19Selected examples:
- 19aW. H. Bernskoetter, A. V. Olmos, J. A. Pool, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2006, 128, 10696–10697;
- 19bW. H. Bernskoetter, E. Lobkovsky, P. J. Chirik, Angew. Chem. Int. Ed. 2007, 46, 2858–2861;
- 19cJ. Ballmann, A. Yeo, B. O. Patrick, M. D. Fryzuk, Angew. Chem. Int. Ed. 2011, 50, 507–510;
- 19dS. P. Semproni, P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 11373–11383;
- 19eY. Nakanishi, Y. Ishida, H. Kawaguchi, Angew. Chem. Int. Ed. 2017, 56, 9193–9197;
- 19fQ. Zhuo, J. Yang, Z. Mo, X. Zhou, T. Shima, Y. Luo, Z. Hou, J. Am. Chem. Soc. 2022, 144, 6972–6980.
- 20Selected examples:
- 20aD. J. Knobloch, E. Lobkovsky, P. J. Chirik, Nat. Chem. 2010, 2, 30–35;
- 20bD. J. Knobloch, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2010, 132, 10553–10564;
- 20cD. J. Knobloch, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2010, 132, 15340–15350;
- 20dD. J. Knobloch, S. P. Semproni, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2012, 134, 3377–3386;
- 20eA. F. Cozzolino, J. S. Silvia, N. Lopez, C. C. Cummins, Dalton Trans. 2014, 43, 4639–4652;
- 20fY. Ishida, H. Kawaguchi, J. Am. Chem. Soc. 2014, 136, 16990–16993.
- 21Selected examples:
- 21aL. Morello, J. B. Love, B. O. Patrick, M. D. Fryzuk, J. Am. Chem. Soc. 2004, 126, 9480–9481;
- 21bS. P. Semproni, P. J. Chirik, Organometallics 2014, 33, 3727–3737;
- 21cJ. Song, Q. Liao, X. Hong, L. Jin, N. Mézailles, Angew. Chem. Int. Ed. 2021, 60, 12242–12247.
- 22D. J. Knobloch, H. E. Toomey, P. J. Chirik, J. Am. Chem. Soc. 2008, 130, 4248–4249.
- 23
- 23aM. E. Volpin, V. B. Shur, R. V. Kudryavtsev, L. A. Prodayko, Chem. Commun. 1968, 1038–1040;
- 23bE. G. Berkovich, V. B. Shur, M. E. Vol'pin, B. Lorenz, S. Rummel, M. Wahren, Chem. Ber. 1980, 113, 70–78;
- 23cV. B. Shur, E. G. Berkovich, M. E. Vol'pin, B. Lorenz, M. Wahren, J. Organomet. Chem. 1982, 228, C36–C38;
- 23dE. G. Berkovich, V. S. Lenenko, L. I. Vyshinskaya, G. A. Vasil'eva, V. B. Shur, M. E. Vol'pin, J. Organomet. Chem. 1997, 535, 169–173;
- 23eS. Bhutto, R. Hooper, B. Mercado, P. L. Holland, J. Am. Chem. Soc. 2023, 145, 4626–4637.
- 24
- 24aK. Hori, M. Mori, J. Am. Chem. Soc. 1998, 120, 7651–7652;
- 24bK. Wang, Z.-H. Deng, S.-J. Xie, D.-D. Zhai, H.-Y. Fang, Z.-J. Shi, Nat. Commun. 2021, 12, 248.
- 25D. Sellmann, Angew. Chem. Int. Ed. Engl. 1971, 10, 919.
- 26
- 26aD. Sellmann, W. Weiss, Angew. Chem. Int. Ed. Engl. 1977, 16, 880–881;
- 26bD. Sellmann, W. Weiss, Angew. Chem. Int. Ed. Engl. 1978, 17, 269–270;
- 26cD. Sellmann, W. Weiss, J. Organomet. Chem. 1978, 160, 183–196.
- 27Seminal papers:
- 27aE. O. Fischer, A. Maasböl, Angew. Chem. Int. Ed. Engl. 1964, 3, 580–581;
- 27bO. S. Mills, A. D. Redhouse, Angew. Chem. Int. Ed. Engl. 1965, 4, 1082; A review:
- 27cK. H. Dötz, J. Stendel, Chem. Rev. 2009, 109, 3227–3274.
- 28E. O. Fischer, A. Maasböl, Chem. Ber. 1967, 100, 2445–2456.
- 29
- 29aA. Bouammali, C. Bijani, L. Vendier, M. Etienne, A. Simonneau, Eur. J. Inorg. Chem. 2020, 1423–1427.
- 30Selected examples of other piano-stool N2 complexes:
- 30aM. Hirotsu, P. P. Fontaine, A. Epshteyn, L. R. Sita, J. Am. Chem. Soc. 2007, 129, 9284–9285;
- 30bM. Hirotsu, P. P. Fontaine, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2007, 129, 12690–12692;
- 30cP. P. Fontaine, B. L. Yonke, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2010, 132, 12273–12285;
- 30dY. Sunada, T. Imaoka, H. Nagashima, Organometallics 2010, 29, 6157–6160;
- 30eA. J. Keane, B. L. Yonke, M. Hirotsu, P. Y. Zavalij, L. R. Sita, J. Am. Chem. Soc. 2014, 136, 9906–9909;
- 30fT. Miyazaki, H. Tanaka, Y. Tanabe, M. Yuki, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, Angew. Chem. Int. Ed. 2014, 53, 11488–11492;
- 30gReference 18b;
- 30hJ. Yin, J. Li, G.-X. Wang, Z.-B. Yin, W.-X. Zhang, Z. Xi, J. Am. Chem. Soc. 2019, 141, 4241–4247;
- 30iE. del Horno, J. Jover, M. Mena, A. Pérez-Redondo, C. Yélamos, Angew. Chem. Int. Ed. 2022, 61, e202204544;
- 30jE. T. Ouellette, J. S. Magdalenski, R. G. Bergman, J. Arnold, Inorg. Chem. 2022, 61, 16064–16071.
- 31
- 31aD. Sellmann, Angew. Chem. Int. Ed. Engl. 1972, 11, 534;
- 31bB. Bayerl, K. Schmidt, M. Wahren, Z. Chem. 1975, 15, 277–278.
- 32Sutton and his group have later discovered that degradation of diazonium complexes can lead selectively to the analogous [(η5-CH3C5H4)Mn(CO)2(N2)] dinitrogen complex, but it was not isolated:
- 32aC. Barrientos-Penna, D. Sutton, J. Chem. Soc. Chem. Commun. 1980, 111–112;
- 32bC. F. Barrientos-Penna, F. W. B. Einstein, D. Sutton, A. C. Willis, Inorg. Chem. 1980, 19, 2740–2749.
- 33Formation of MnI N2 complexes upon photolysis of carbonyl precursors has also been evidenced with time-resolved IR spectroscopy:
- 33aJ. A. Banister, M. W. George, S. Grubert, S. M. Howdle, M. Jobling, F. P. A. Johnson, S. L. Morrison, M. Poliakoff, U. Schubert, J. R. Westwell, J. Organomet. Chem. 1994, 484, 129–135;
- 33bB. H. G. Swennenhuis, R. Poland, N. J. De Yonker, C. E. Webster, D. J. Darensbourg, A. A. Bengali, Organometallics 2011, 30, 3054–3063;
- 33cJ. B. Eastwood, L. A. Hammarback, M. T. McRobie, I. P. Clark, M. Towrie, I. J. S. Fairlamb, J. M. Lynam, Dalton Trans. 2020, 49, 5463–5470.
- 34I. Kulai, A. Karpus, L. Soroka, D. A. Valyaev, V. Bourdon, E. Manoury, R. Poli, M. Destarac, S. Mazières, Polym. Chem. 2018, 10, 267–277.
- 35After their initial preparation of [CpMn(CO)2(N2)] (1), Sellmann and co-workers have reported a method to purify it using HPLC at very low temperature. Because we had no access to an HPLC apparatus working under low temperatures, samples containing <10 % cymantrene were used for the present study, without affecting the results. D. Sellmann, E. Jonk, H.-J. Reinecke, T. Würminghausen, Fresenius Z. Anal. Chem. 1979, 294, 372–374.
- 36
- 36aK. Weidenhammer, W. A. Herrmann, M. L. Ziegler, Z. Anorg. Allg. Chem. 1979, 457, 183–188;
- 36bW. A. Chomitz, J. Arnold, Chem. Commun. 2007, 4797–4799;
- 36cW. A. Chomitz, J. Arnold, Dalton Trans. 2009, 1714–1720;
- 36dD. C. Cummins, G. P. A. Yap, K. H. Theopold, Eur. J. Inorg. Chem. 2016, 2349–2356.
- 37C. Perthuisot, M. Fan, W. D. Jones, Organometallics 1992, 11, 3622–3629.
- 38L. J. Farrugia, C. Evans, D. Lentz, M. Roemer, J. Am. Chem. Soc. 2009, 131, 1251–1268.
- 39A. O. Borissova, M. Y. Antipin, K. A. Lyssenko, J. Phys. Chem. A 2009, 113, 10845–10851.
- 40Such H-bond network can be found in other reported structures of cymantrene, see for example reference 38.
- 41M. Y. Darensbourg, in Progress in Inorganic Chemistry, Vol. 33 (Ed.: S. J. Lippard), Wiley, New York, 1985, pp. 221–274.
- 42E. O. Fischer, C. Apostolidis, E. Dornberger, A. C. Filippou, B. Kanellakopulos, B. Lungwitz, J. Müller, B. Powietzka, J. Rebizant, W. Roth, Z. Naturforsch. B 1995, 2, 1382–1395.
10.1515/znb-1995-0916 Google Scholar
- 43H. J. Reich, D. P. Green, M. A. Medina, W. S. Goldenberg, B. Ö. Gudmundsson, R. R. Dykstra, N. H. Phillips, J. Am. Chem. Soc. 1998, 120, 7201–7210.
- 44IR monitoring of the reaction of PhLi ⋅ PMDTA with 1 in Et2O revealed two close sets of CO stretches for 3 ⋅ PMDTA, suggesting that the Li+ cation may interact with different moieties in the anionic Mn complex (see Figure S27).
- 45Two independent molecules of 3 ⋅ PMDTA are found in the unit cell, averaged metrical data are given.
- 46For representative examples of structurally characterized MnII arylmanganate complexes, see:
- 46aM. Uzelac, P. Mastropierro, M. de Tullio, I. Borilovic, M. Tarrés, A. R. Kennedy, G. Aromí, E. Hevia, Angew. Chem. Int. Ed. 2021, 60, 3247–3253;
- 46bR. A. Musgrave, R. S. P. Turbervill, M. Irwin, J. M. Goicoechea, Angew. Chem. Int. Ed. 2012, 51, 10832–10835;
- 46cR. A. Bartlett, M. M. Olmstead, P. P. Power, S. C. Shoner, Organometallics 1988, 7, 1801–1806.
- 47Deposition numbers 2246956 (for 1), 2246957 (for 3 ⋅ PMDTA), 2246958 (for 4 ⋅ PMDTA), and 2246958 (for 2 ⋅ PMDTA) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 48W. T. Boese, B. Lee, D. W. Ryba, S. T. Belt, P. C. Ford, Organometallics 1993, 12, 4739–4741.
- 49Intriguingly, the same temperature sensitivity was observed by Sellmann in the reaction of 1 with methyllithium that leads above −20 °C to the methylate complex [Cp(CO)2MnMe]Li. The CO stretching frequencies of the latter were reported to be very close to the presumed methyldiazenido complex. See: D. Sellmann, P. Klostermann, Z. Naturforsch. B 1983, 38B, 1497–1500.
- 50A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502–16513.
- 51Functionalization of the proximal (α) nitrogen of an end-on dinitrogen ligand triggered by electrophilic attack at the distal (β) nitrogen is known, see: M. M. Deegan, J. C. Peters, Chem. Sci. 2018, 9, 6264–6270 and references 9 and 23e.
- 52A. M. Borys, Organometallics 2023, 42, 182–196.
- 53M. Schlosser, V. Ladenberger, J. Organomet. Chem. 1967, 8, 193–197.
- 54R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795–1818.
- 55R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Pure Appl. Chem. 2008, 80, 59–84.
- 56G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- 57G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
- 58L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837–838.
- 59P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487–1487.
- 60J. A. Ibers, W. C. Hamilton, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974.
- 61Gaussian 09, revision D.01. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S; S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, 2013.
- 62
- 62aJ. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671–6687;
- 62bA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 63M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866–872.
- 64A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. A. Frenking, Chem. Phys. Lett. 1993, 208, 111–114.
- 65F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–305.
- 66F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–65.
- 67A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 68F. London, J. Phys. Radium 1937, 8, 397–409.
- 69R. McWeeny, Phys. Rev. 1962, 126, 1028.
- 70R. Ditchfield, Mol. Phys. 1974, 27, 789–807.
- 71K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251–8260.
- 72J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497–5509.
- 73A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.
- 74A. E. Reed, F. Weinhold, J. Chem. Phys. 1983, 78, 4066–4073.
- 75S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 76D. Sellmann, Z. Naturforsch. B 1970, 25, 890–891.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.