Dendronized DNA Chimeras Harness Scavenger Receptors To Degrade Cell Membrane Proteins
Chenghong Zhu
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWeishan Wang
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYan Wang
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Yan Zhang
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Jinbo Li
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorChenghong Zhu
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWeishan Wang
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYan Wang
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Yan Zhang
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Jinbo Li
State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023 China
Search for more papers by this authorAbstract
Bispecific chimeras bridging cell membrane proteins with lysosome-trafficking receptors (LTRs) provide an effective therapeutic approach through lysosomal degradation of disease-relevant targets. Here, we report a novel dendronized DNA chimera (DENTAC) strategy that uses a dendritic DNA to engage cell surface scavenger receptors (SRs) as LTR. Using bioorthogonal strain-promoted alkyne-azide cycloaddition to conjugate the dendritic DNA with protein binder, the resulting DENTAC is able to traffic the protein target into the lysosome for elimination. We demonstrated the utility of DENTAC by degrading oncogenic membrane nucleolin (NCL) and epidermal growth factor receptor (EGFR). The anti-cancer application of NCL-targeting DENTAC was validated in a mouse xenograft model of lung cancer. This work thus presents a new avenue for rapid development of potent degraders against membrane proteins, with also broad research and therapeutic prospects.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202300694-sup-0001-misc_information.pdf37.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Weiss, D. Lauffenburger, P. Friedl, Nat. Rev. Cancer 2022, 22, 157–173;
- 1bN. D. Huntington, J. Cursons, J. Rautela, Nat. Rev. Cancer 2020, 20, 437–454.
- 2B. Dale, M. Cheng, K. S. Park, H. U. Kaniskan, Y. Xiong, J. Jin, Nat. Rev. Cancer 2021, 21, 638–654.
- 3K. M. Sakamoto, K. B. Kim, A. Kumagai, F. Mercurio, C. M. Crews, R. J. Deshaies, Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559.
- 4
- 4aA. D. Cotton, D. P. Nguyen, J. A. Gramespacher, I. B. Seiple, J. A. Wells, J. Am. Chem. Soc. 2021, 143, 593–598;
- 4bJ. A. Gramespacher, A. D. Cotton, P. W. W. Burroughs, I. B. Seiple, J. A. Wells, ACS Chem. Biol. 2022, 17, 1259–1268;
- 4cH. Marei, W. K. Tsai, Y. S. Kee, K. Ruiz, J. He, C. Cox, T. Sun, S. Penikalapati, P. Dwivedi, M. Choi, D. Kan, P. Saenz-Lopez, K. Dorighi, P. Zhang, Y. T. Kschonsak, N. Kljavin, D. Amin, I. Kim, A. G. Mancini, T. Nguyen, C. Wang, E. Janezic, A. Doan, E. Mai, H. Xi, C. Gu, M. Heinlein, B. Biehs, J. Wu, I. Lehoux, S. Harris, L. Comps-Agrar, D. Seshasayee, F. J. de Sauvage, M. Grimmer, J. Li, N. J. Agard, E. M. F. de Sousa, Nature 2022, 610, 182–189;
- 4dK. Pance, J. A. Gramespacher, J. R. Byrnes, F. Salangsang, J. C. Serrano, A. D. Cotton, V. Steri, J. A. Wells, Nat. Biotechnol. 2022, https://doi.org/10.1038/s41587-022-01456-2.
- 5H. Zhang, Y. Han, Y. Yang, F. Lin, K. Li, L. Kong, H. Liu, Y. Dang, J. Lin, P. R. Chen, J. Am. Chem. Soc. 2021, 143, 16377–16382.
- 6G. Ahn, S. M. Banik, C. R. Bertozzi, Cell Chem. Biol. 2021, 28, 1072–1080.
- 7
- 7aS. M. Banik, K. Pedram, S. Wisnovsky, G. Ahn, N. M. Riley, C. R. Bertozzi, Nature 2020, 584, 291–297;
- 7bY. Miao, Q. Gao, M. Mao, C. Zhang, L. Yang, Y. Yang, D. Han, Angew. Chem. Int. Ed. 2021, 60, 11267–11271; Angew. Chem. 2021, 133, 11367–11371;
- 7cX. Zhang, H. Liu, J. He, C. Ou, T. C. Donahue, M. M. Muthana, L. Su, L. X. Wang, ACS Chem. Biol. 2022, 17, 3013–3023.
- 8
- 8aG. Ahn, S. M. Banik, C. L. Miller, N. M. Riley, J. R. Cochran, C. R. Bertozzi, Nat. Chem. Biol. 2021, 17, 937–946;
- 8bD. F. Caianiello, M. Zhang, J. D. Ray, R. A. Howell, J. C. Swartzel, E. M. J. Branham, E. Chirkin, V. R. Sabbasani, A. Z. Gong, D. M. McDonald, V. Muthusamy, D. A. Spiegel, Nat. Chem. Biol. 2021, 17, 947–953;
- 8cY. Zhou, P. Teng, N. T. Montgomery, X. Li, W. Tang, ACS Cent. Sci. 2021, 7, 499–506.
- 9J. Zheng, W. He, J. Li, X. Feng, Y. Li, B. Cheng, Y. Zhou, M. Li, K. Liu, X. Shao, J. Zhang, H. Li, L. Chen, L. Fang, J. Am. Chem. Soc. 2022, 144, 21831–21836.
- 10J. Paulk, Nat. Chem. Biol. 2021, 17, 931–933.
- 11
- 11aA. Saminathan, M. Zajac, P. Anees, Y. Krishnan, Nat. Rev. Mater. 2022, 7, 355–371;
- 11bA. Lacroix, H. F. Sleiman, ACS Nano 2021, 15, 3631–3645;
- 11cQ. Hu, H. Li, L. Wang, H. Gu, C. Fan, Chem. Rev. 2019, 119, 6459–6506;
- 11dJ. I. Cutler, E. Auyeung, C. A. Mirkin, J. Am. Chem. Soc. 2012, 134, 1376–1391.
- 12
- 12aX. Peng, S. Fang, B. Ji, M. Li, J. Song, L. Qiu, W. Tan, Nano Lett. 2021, 21, 6946–6951;
- 12bY. Wang, E. Benson, F. Fördős, M. Lolaico, I. Baars, T. Fang, A. I. Teixeira, B. Högberg, Adv. Mater. 2021, 33, 2008457;
- 12cS. Wang, Y. Chen, S. Wang, P. Li, C. A. Mirkin, O. K. Farha, J. Am. Chem. Soc. 2019, 141, 2215–2219;
- 12dP. Wang, M. A. Rahman, Z. Zhao, K. Weiss, C. Zhang, Z. Chen, S. J. Hurwitz, Z. G. Chen, D. M. Shin, Y. Ke, J. Am. Chem. Soc. 2018, 140, 2478–2484;
- 12eG. Vindigni, S. Raniolo, A. Ottaviani, M. Falconi, O. Franch, B. R. Knudsen, A. Desideri, S. Biocca, ACS Nano 2016, 10, 5971–5979;
- 12fK. Ezzat, Y. Aoki, T. Koo, G. McClorey, L. Benner, A. Coenen-Stass, L. O'Donovan, T. Lehto, A. Garcia-Guerra, J. Nordin, A. F. Saleh, M. Behlke, J. Morris, A. Goyenvalle, B. Dugovic, C. Leumann, S. Gordon, M. J. Gait, S. El-Andaloussi, M. J. Wood, Nano Lett. 2015, 15, 4364–4373;
- 12gJ. Choi Chung Hang, L. Hao, P. Narayan Suguna, E. Auyeung, A. Mirkin Chad, Proc. Natl. Acad. Sci. USA 2013, 110, 7625–7630;
- 12hL. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, C. Fan, Angew. Chem. Int. Ed. 2014, 53, 7745–7750; Angew. Chem. 2014, 126, 7879–7884.
- 13
- 13aZ. Chen, Z. Wei, F. Xiao, Z. Chao, J. Lu, Z. Wang, L. Tian, Adv. Funct. Mater. 2022, 32, 2207845;
- 13bP. Kumthekar, C. H. Ko, T. Paunesku, K. Dixit, A. M. Sonabend, O. Bloch, M. Tate, M. Schwartz, L. Zuckerman, R. Lezon, R. V. Lukas, B. Jovanovic, K. McCortney, H. Colman, S. Chen, B. Lai, O. Antipova, J. Deng, L. Li, S. Tommasini-Ghelfi, L. A. Hurley, D. Unruh, N. V. Sharma, M. Kandpal, F. M. Kouri, R. V. Davuluri, D. J. Brat, M. Muzzio, M. Glass, V. Vijayakumar, J. Heidel, F. J. Giles, A. K. Adams, C. D. James, G. E. Woloschak, C. Horbinski, A. H. Stegh, Sci. Transl. Med. 2021, 13, eabb3945;
- 13cL. Chen, G. Li, X. Wang, J. Li, Y. Zhang, ACS Nano 2021, 15, 11929–11939;
- 13dM. Zheng, T. Jiang, W. Yang, Y. Zou, H. Wu, X. Liu, F. Zhu, R. Qian, D. Ling, K. McDonald, J. Shi, B. Shi, Angew. Chem. Int. Ed. 2019, 58, 4938–4942; Angew. Chem. 2019, 131, 4992–4996;
- 13eX. Tan, X. Lu, F. Jia, X. Liu, Y. Sun, J. K. Logan, K. Zhang, J. Am. Chem. Soc. 2016, 138, 10834–10837;
- 13fJ. I. Cutler, K. Zhang, D. Zheng, E. Auyeung, A. E. Prigodich, C. A. Mirkin, J. Am. Chem. Soc. 2011, 133, 9254–9257.
- 14K. Dan, A. T. Veetil, K. Chakraborty, Y. Krishnan, Nat. Nanotechnol. 2019, 14, 252–259.
- 15
- 15aY. Dong, C. Yao, Y. Zhu, L. Yang, D. Luo, D. Yang, Chem. Rev. 2020, 120, 9420–9481;
- 15bM. E. Distler, M. H. Teplensky, K. E. Bujold, C. D. Kusmierz, M. Evangelopoulos, C. A. Mirkin, J. Am. Chem. Soc. 2021, 143, 13513–13518;
- 15cY. Kawamoto, W. Liu, J. H. Yum, S. Park, H. Sugiyama, Y. Takahashi, Y. Takakura, ChemBioChem 2022, 23, e202100583.
- 16
- 16aX. Wang, X. Xiao, Y. Feng, J. Li, Y. Zhang, Chem. Sci. 2022, 13, 5345–5352;
- 16bX. Wang, Y. Wang, J. Li, T. Tian, J. Li, Z. Guo, Y. Zhang, Adv. Ther. 2022, 5, 2100161.
- 17P. J. Gough, S. Gordon, Microbes Infect. 2000, 2, 305–311.
- 18S. Romano, N. Fonseca, S. Simões, J. Gonçalves, J. N. Moreira, Drug Discovery Today 2019, 24, 1985–2001.
- 19M. Koutsioumpa, E. Papadimitriou, Recent Pat. Anti-Cancer Drug Discovery 2014, 9, 137–152.
- 20P. J. Bates, D. A. Laber, D. M. Miller, S. D. Thomas, J. O. Trent, Exp. Mol. Pathol. 2009, 86, 151–164.
- 21K. Prapainop, R. Miao, C. Åberg, A. Salvati, K. A. Dawson, Nanoscale 2017, 9, 11261–11268.
- 22D. Hoja-Łukowicz, S. Kedracka-Krok, W. Duda, A. Lityńska, Cell. Mol. Biol. Lett. 2014, 19, 461–482.
- 23M. C. Garcia, J. Williams, K. Johnson, K. Olden, J. D. Roberts, FEBS Lett. 2011, 585, 618–622.
- 24
- 24aJ. Canton, D. Neculai, S. Grinstein, Nat. Rev. Immunol. 2013, 13, 621–634;
- 24bA. Alquraini, J. El Khoury, Curr. Biol. 2020, 30, R790–R795.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.