Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction
Jiaqi Zhao
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYa Bai
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Synfuels China, Beijing, 100195 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Zhenhua Li
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDr. Jinjia Liu
Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Synfuels China, Beijing, 100195 China
College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022 China
Search for more papers by this authorDr. Wei Wang
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorPu Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Bei Yang
CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorDr. Run Shi
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Geoffrey I. N. Waterhouse
School of Chemical Sciences, The University of Auckland, Auckland, 1142 New Zealand
Search for more papers by this authorProf. Xiao-Dong Wen
Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Synfuels China, Beijing, 100195 China
Search for more papers by this authorProf. Qing Dai
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Tierui Zhang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJiaqi Zhao
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYa Bai
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Synfuels China, Beijing, 100195 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Zhenhua Li
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDr. Jinjia Liu
Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Synfuels China, Beijing, 100195 China
College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022 China
Search for more papers by this authorDr. Wei Wang
Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorPu Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Bei Yang
CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorDr. Run Shi
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Geoffrey I. N. Waterhouse
School of Chemical Sciences, The University of Auckland, Auckland, 1142 New Zealand
Search for more papers by this authorProf. Xiao-Dong Wen
Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Synfuels China, Beijing, 100195 China
Search for more papers by this authorProf. Qing Dai
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Tierui Zhang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H2 under UV/Vis irradiation (1.4 W cm−2) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H2O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H2. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202219299-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411–414;
- 1bY. Li, Y.-K. Peng, L. Hu, J. Zheng, D. Prabhakaran, S. Wu, T. J. Puchtler, M. Li, K.-Y. Wong, R. A. Taylor, S. C. E. Tsang, Nat. Commun. 2019, 10, 4421.
- 2
- 2aS. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu, Y. Ye, L. Lin, X. Wen, P. Liu, B. Chen, E. Crumlin, J. Guo, Z. Zuo, W. Li, J. Xie, L. Lu, C. J. Kiely, L. Gu, C. Shi, J. A. Rodriguez, D. Ma, Science 2017, 357, 389–393;
- 2bQ. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 2003, 301, 935–938;
- 2cK. Ding, A. Gulec, M. Johnson Alexis, M. Schweitzer Neil, D. Stucky Galen, D. Marks Laurence, C. Stair Peter, Science 2015, 350, 189–192.
- 3
- 3aA. A. Gokhale, J. A. Dumesic, M. Mavrikakis, J. Am. Chem. Soc. 2008, 130, 1402–1414;
- 3bY.-L. Lee, K. Lee, C. H. Ko, H.-S. Roh, Chem. Eng. J. 2022, 431, 134299.
- 4X. Zhang, M. Zhang, Y. Deng, M. Xu, L. Artiglia, W. Wen, R. Gao, B. Chen, S. Yao, X. Zhang, M. Peng, J. Yan, A. Li, Z. Jiang, X. Gao, S. Cao, C. Yang, A. J. Kropf, J. Shi, J. Xie, M. Bi, J. A. van Bokhoven, Y.-W. Li, X. Wen, M. Flytzani-Stephanopoulos, C. Shi, W. Zhou, D. Ma, Nature 2021, 589, 396–401.
- 5
- 5aF. Sastre, M. Oteri, A. Corma, H. García, Energy Environ. Sci. 2013, 6, 2211–2215;
- 5bS. M. Fang, B. H. Chen, J. M. White, J. Phys. Chem. 1982, 86, 3126–3130;
- 5cL. Millard, M. Bowker, J. Photochem. Photobiol. A 2002, 148, 91–95;
- 5dC. Yixuan, W. Zhaobin, C. Yanxin, L. Huaxin, H. Zupei, L. Huiqing, D. Yonglei, Y. Chuying, L. Wenzhao, J. Mol. Catal. 1983, 21, 275–289;
10.1016/0304-5102(93)80127-G Google Scholar
- 5eL. Zhao, Y. Qi, L. Song, S. Ning, S. Ouyang, H. Xu, J. Ye, Angew. Chem. Int. Ed. 2019, 58, 7708–7712; Angew. Chem. 2019, 131, 7790–7794;
- 5fF. Liu, L. Song, S. Ouyang, H. Xu, Catal. Sci. Technol. 2019, 9, 2125–2131;
- 5gC. Shi, D. Yuan, L. Ma, Y. Li, Y. Lu, L. Gao, X. San, S. Wang, G. Fu, J. Mater. Chem. A 2020, 8, 19467–19472.
- 6
- 6aM. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu, R. Schlögl, I. E. Wachs, Y.-F. Han, Angew. Chem. Int. Ed. 2019, 58, 9083–9087; Angew. Chem. 2019, 131, 9181–9185;
- 6bZ. H. Zhang, S. S. Wang, R. Song, T. Cao, L. F. Luo, X. Y. Chen, Y. X. Gao, J. Q. Lu, W. X. Li, W. X. Huang, Nat. Commun. 2017, 8, 488;
- 6cZ. Zhang, X. Chen, J. Kang, Z. Yu, J. Tian, Z. Gong, A. Jia, R. You, K. Qian, S. He, B. Teng, Y. Cui, Y. Wang, W. Zhang, W. Huang, Nat. Commun. 2021, 12, 4331;
- 6dM. Zhu, I. E. Wachs, ACS Catal. 2016, 6, 1764–1767;
- 6eF. R. García-García, M. A. Rahman, I. D. González-Jiménez, K. Li, Catal. Today 2011, 171, 281–289;
- 6fG. Aguila, A. Valenzuela, S. Guerrero, P. Araya, Catal. Commun. 2013, 39, 82–85.
- 7
- 7aN. Liu, M. Xu, Y. Yang, S. Zhang, J. Zhang, W. Wang, L. Zheng, S. Hong, M. Wei, ACS Catal. 2019, 9, 2707–2717;
- 7bL. Sun, J. Xu, X. Liu, B. Qiao, L. Li, Y. Ren, Q. Wan, J. Lin, S. Lin, X. Wang, H. Guo, T. Zhang, ACS Catal. 2021, 11, 5942–5950;
- 7cN. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Energy Environ. Sci. 2010, 3, 831–837;
- 7dN. M. Schweitzer, J. A. Schaidle, O. K. Ezekoye, X. Pan, S. Linic, L. T. Thompson, J. Am. Chem. Soc. 2011, 133, 2378–2381.
- 8
- 8aL. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Nat. Energy 2020, 5, 61–70;
- 8bP. Christopher, H. Xin, A. Marimuthu, S. Linic, Nat. Mater. 2012, 11, 1044–1050.
- 9
- 9aX. Xu, F. Luo, W. Tang, J. Hu, H. Zeng, Y. Zhou, Adv. Funct. Mater. 2018, 28, 1804055;
- 9bY. Xin, K. Yu, L. Zhang, Y. Yang, H. Yuan, H. Li, L. Wang, J. Zeng, Adv. Mater. 2021, 33, 2008145.
- 10S. Xu, S. Chansai, C. Stere, B. Inceesungvorn, A. Goguet, K. Wangkawong, S. F. R. Taylor, N. Al-Janabi, C. Hardacre, P. A. Martin, X. Fan, Nat. Catal. 2019, 2, 142–148.
- 11M. Xu, M. Wei, Adv. Funct. Mater. 2018, 28, 1802943.
- 12
- 12aZ. Li, J. Liu, Y. Zhao, G. I. N. Waterhouse, G. Chen, R. Shi, X. Zhang, X. Liu, Y. Wei, X.-D. Wen, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 2018, 30, 1800527;
- 12bY. Zhao, Z. Li, M. Li, J. Liu, X. Liu, G. I. N. Waterhouse, Y. Wang, J. Zhao, W. Gao, Z. Zhang, R. Long, Q. Zhang, L. Gu, X. Liu, X. Wen, D. Ma, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 2018, 30, 1803127;
- 12cZ. Li, J. Liu, Y. Zhao, R. Shi, G. I. N. Waterhouse, Y. Wang, L.-Z. Wu, C.-H. Tung, T. Zhang, Nano Energy 2019, 60, 467–475;
- 12dX. Zhang, G. Q. Cui, H. S. Feng, L. F. Chen, H. Wang, B. Wang, X. Zhang, L. R. Zheng, S. Hong, M. Wei, Nat. Commun. 2019, 10, 5812.
- 13N. A. Koryabkina, A. A. Phatak, W. F. Ruettinger, R. J. Farrauto, F. H. Ribeiro, J. Catal. 2003, 217, 233–239.
- 14S. Yu, P. K. Jain, Angew. Chem. Int. Ed. 2020, 59, 22480–22483; Angew. Chem. 2020, 132, 22666–22669.
- 15X. Chen, G. He, Y. Li, M. Chen, X. Qin, C. Zhang, H. He, ACS Catal. 2020, 10, 9706–9715.
- 16
- 16aJ. Vecchietti, A. Bonivardi, W. Xu, D. Stacchiola, J. J. Delgado, M. Calatayud, S. E. Collins, ACS Catal. 2014, 4, 2088–2096;
- 16bK. Mudiyanselage, S. D. Senanayake, L. Feria, S. Kundu, A. E. Baber, J. Graciani, A. B. Vidal, S. Agnoli, J. Evans, R. Chang, S. Axnanda, Z. Liu, J. F. Sanz, P. Liu, J. A. Rodriguez, D. J. Stacchiola, Angew. Chem. Int. Ed. 2013, 52, 5101–5105; Angew. Chem. 2013, 125, 5205–5209.
- 17M. Xu, S. Yao, D. Rao, Y. Niu, N. Liu, M. Peng, P. Zhai, Y. Man, L. Zheng, B. Wang, B. Zhang, D. Ma, M. Wei, J. Am. Chem. Soc. 2018, 140, 11241–11251.
- 18N. C. Nelson, M.-T. Nguyen, V.-A. Glezakou, R. Rousseau, J. Szanyi, Nat. Catal. 2019, 2, 916–924.
- 19B. Kaduk, T. Kowalczyk, T. Van Voorhis, Chem. Rev. 2012, 112, 321–370.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.