Color-Tunable Dual-Mode Organic Afterglow from Classical Aggregation-Caused Quenching Compounds for White-Light-Manipulated Anti-Counterfeiting
Yaohui Liang
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorProf. Chao Xu
School of Environment, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorHuaqing Zhang
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorShiying Wu
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorJian-An Li
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorYifan Yang
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorDr. Zhu Mao
Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorProf. Suilian Luo
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorProf. Cong Liu
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Guang Shi
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorProf. Fengqiang Sun
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Zhenguo Chi
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Bingjia Xu
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorYaohui Liang
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorProf. Chao Xu
School of Environment, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorHuaqing Zhang
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorShiying Wu
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorJian-An Li
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorYifan Yang
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorDr. Zhu Mao
Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorProf. Suilian Luo
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorProf. Cong Liu
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Guang Shi
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorProf. Fengqiang Sun
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Zhenguo Chi
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Bingjia Xu
School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorAbstract
Color-tunable dual-mode organic afterglow excited by ultraviolet (UV) and white light was achieved from classical aggregation-caused quenching compounds for the first time. Specifically, two luminescent systems, which could produce significant organic afterglow composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence under ambient conditions, were constructed by doping fluorescein sodium and calcein sodium into aluminum sulfate. Their lifetimes surpassed 600 ms, and the dopant concentrations were as low as 5×10−6 wt %. Moreover, the persistent luminescence colors of the materials could be tuned from blue to green and then to yellow by simply varying the concentrations of guest compounds or the temperature in the range of 260–340 K. Inspired by these exciting results, the afterglow materials were used for UV- and white-light-manipulated anti-counterfeiting and preparation of elastomers with different colors of persistent luminescence.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217616-sup-0001-misc_information.pdf3.6 MB | Supporting Information |
ange202217616-sup-0001-SI_Video_S1.mp4936.9 KB | Supporting Information |
ange202217616-sup-0001-SI_Video_S2.mp4863.2 KB | Supporting Information |
ange202217616-sup-0001-SI_Video_S3.mp4749.7 KB | Supporting Information |
ange202217616-sup-0001-SI_Video_S4.mp4801.6 KB | Supporting Information |
ange202217616-sup-0001-SI_Video_S5.mp4470.7 KB | Supporting Information |
ange202217616-sup-0001-SI_Video_S6.mp4486.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 2016, 28, 9920–9940;
- 1bZ. Wu, J. Nitsch, T. B. Marder, Adv. Opt. Mater. 2021, 9, 2100411;
- 1cR. Gao, M. S. Kodaimati, D. Yan, Chem. Soc. Rev. 2021, 50, 5564–5589;
- 1dM. M. Fang, J. Yang, Z. Li, Chin. J. Polym. Sci. 2019, 37, 383–393;
- 1eX. Yan, H. Peng, Y. Xiang, J. Wang, L. Yu, Y. Tao, H. Li, W. Huang, R. Chen, Small 2022, 18, 2104073;
- 1fW. Shao, J. Kim, Acc. Chem. Res. 2022, 55, 1573–1585;
- 1gW. Dai, X. Niu, X. Wu, Y. Ren, Y. Zhang, G. Li, H. Su, Y. Lei, J. Xiao, J. Shi, B. Tong, Z. Cai, Y. Dong, Angew. Chem. Int. Ed. 2022, 61, e202200236; Angew. Chem. 2022, 134, e202200236.
- 2R. Kabe, C. Adachi, Nature 2017, 550, 384–387.
- 3
- 3aW. Zhao, Z. He, W. Y. Lam, Q. Peng, H. Ma, Z. Shuai, G. Bai, J. Hao, B. Z. Tang, Chem 2016, 1, 592–602;
- 3bT. Yang, Y. Wang, J. Duan, S. Wei, S. Tang, W. Z. Yuan, Research 2021, 2021, 9757460;
- 3cD. Li, J. Yang, M. Fang, B. Z. Tang, Z. Li, Sci. Adv. 2022, 8, eabl8392;
- 3dY. Ren, W. Dai, S. Guo, L. Dong, S. Huang, J. Shi, B. Tong, N. Hao, L. Li, Z. Cai, Y. Dong, J. Am. Chem. Soc. 2022, 144, 1361–1369;
- 3eH. Thomas, D. L. Pastoetter, M. Gmelch, T. Achenbach, A. Schlogl, M. Louis, X. Feng, S. Reineke, Adv. Mater. 2020, 32, 2000880.
- 4
- 4aZ. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685–690;
- 4bY. Su, Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang, Y. Zhao, Sci. Adv. 2018, 4, eaas9732;
- 4cH. Peng, G. Z. Xie, Y. Cao, L. Y. Zhang, X. Yan, X. Zhang, S. H. Miao, Y. Tao, H. H. Li, C. Zheng, W. Huang, R. F. Chen, Sci. Adv. 2022, 8, eabk2925;
- 4dJ. A. Li, J. Zhou, Z. Mao, Z. Xie, Z. Yang, B. Xu, C. Liu, X. Chen, D. Ren, H. Pan, G. Shi, Y. Zhang, Z. Chi, Angew. Chem. Int. Ed. 2018, 57, 6449–6453; Angew. Chem. 2018, 130, 6559–6563;
- 4eJ. A. Li, Z. Song, Y. Chen, C. Xu, S. Li, Q. Peng, G. Shi, C. Liu, S. Luo, F. Sun, Z. Zhao, Z. Chi, Y. Zhang, B. Xu, Chem. Eng. J. 2021, 418, 129167;
- 4fL. Gu, W. Ye, X. Liang, A. Lv, H. Ma, M. Singh, W. Jia, Z. Shen, Y. Guo, Y. Gao, H. Chen, D. Wang, Y. Wu, J. Liu, H. Wang, Y. X. Zheng, Z. An, W. Huang, Y. Zhao, J. Am. Chem. Soc. 2021, 143, 18527–18535;
- 4gY. Zhang, X. Chen, J. Xu, Q. Zhang, L. Gao, Z. Wang, L. Qu, K. Wang, Y. Li, Z. Cai, Y. Zhao, C. Yang, J. Am. Chem. Soc. 2022, 144, 6107–6117;
- 4hX. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem. Int. Ed. 2018, 57, 10854–10858; Angew. Chem. 2018, 130, 11020–11024;
- 4iY. Lei, W. Dai, J. Guan, S. Guo, F. Ren, Y. Zhou, J. Shi, B. Tong, Z. Cai, J. Zheng, Y. Dong, Angew. Chem. Int. Ed. 2020, 59, 16054–16060; Angew. Chem. 2020, 132, 16188–16194;
- 4jX. Liang, Y. X. Zheng, J. L. Zuo, Angew. Chem. Int. Ed. 2021, 60, 16984–16988; Angew. Chem. 2021, 133, 17121–17125;
- 4kA. D. Nidhankar, Goudappagouda, D. S. Mohana Kumari, S. K. Chaubey, R. Nayak, R. G. Gonnade, G. V. P. Kumar, R. Krishnan, S. S. Babu, Angew. Chem. Int. Ed. 2020, 59, 13079–13085; Angew. Chem. 2020, 132, 13179–13185;
- 4lN. Liu, Y. Pan, Y. Lei, M. Liu, C. Peng, Z. Cai, G. Shen, H. Wu, X. Huang, Y. Dong, Chem. Eng. J. 2022, 433, 133530.
- 5X. Wang, Y. Sun, G. Wang, J. Li, X. Li, K. Zhang, Angew. Chem. Int. Ed. 2021, 60, 17138–17147; Angew. Chem. 2021, 133, 17275–17284.
- 6
- 6aJ. Chen, T. Yu, E. Ubba, Z. Xie, Z. Yang, Y. Zhang, S. Liu, J. Xu, M. P. Aldred, Z. Chi, Adv. Opt. Mater. 2019, 7, 1801593;
- 6bM. Louis, H. Thomas, M. Gmelch, A. Haft, F. Fries, S. Reineke, Adv. Mater. 2019, 31, 1807887;
- 6cZ. Mao, Z. Yang, C. Xu, Z. Xie, L. Jiang, F. L. Gu, J. Zhao, Y. Zhang, M. P. Aldred, Z. Chi, Chem. Sci. 2019, 10, 7352–7357;
- 6dJ. Jin, H. Jiang, Q. Yang, L. Tang, Y. Tao, Y. Li, R. Chen, C. Zheng, Q. Fan, K. Y. Zhang, Q. Zhao, W. Huang, Nat. Commun. 2020, 11, 842;
- 6eJ. X. Wang, Y. G. Fang, C. X. Li, L. Y. Niu, W. H. Fang, G. Cui, Q. Z. Yang, Angew. Chem. Int. Ed. 2020, 59, 10032–10036; Angew. Chem. 2020, 132, 10118–10122;
- 6fG. Huang, Z. Deng, J. Pang, J. Li, S. Ni, J. A. Li, C. Zhou, H. Li, B. Xu, L. Dang, M. D. Li, Adv. Opt. Mater. 2021, 9, 2101337;
- 6gJ. Jin, P. Xue, L. Zhang, H. Jiang, W. Wang, Q. Yang, Y. Tao, C. Zheng, R. Chen, W. Huang, Angew. Chem. Int. Ed. 2021, 60, 24984–24990; Angew. Chem. 2021, 133, 25188–25194;
- 6hF. Li, C. Qian, J. Lu, Y. Ma, K. Y. Zhang, S. Liu, Q. Zhao, Adv. Opt. Mater. 2022, 10, 2101773;
- 6iY. Sun, G. Wang, X. Li, B. Zhou, K. Zhang, Adv. Opt. Mater. 2021, 9, 2100353;
- 6jJ. Song, Y. Wang, L. Qu, L. Fang, X. Zhou, Z. X. Xu, C. Yang, P. Wu, H. Xiang, J. Phys. Chem. Lett. 2022, 13, 5838–5844;
- 6kD. Wang, Z. Lu, X. Qin, Z. Zhang, Y. e Shi, J. W. Y. Lam, Z. Wang, B. Z. Tang, Adv. Opt. Mater. 2022, 10, 2200629;
- 6lY. Yang, Y. Liang, Y. Zheng, J. A. Li, S. Wu, H. Zhang, T. Huang, S. Luo, C. Liu, G. Shi, F. Sun, Z. Chi, B. Xu, Angew. Chem. Int. Ed. 2022, 61, e202201820; Angew. Chem. 2022, 134, e202201820.
- 7
- 7aJ. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429–5479;
- 7bJ. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.
- 8
- 8aS. Kuila, S. Garain, S. Bandi, S. J. George, Adv. Funct. Mater. 2020, 30, 2003693;
- 8bM. Jian, Z. Song, X. Chen, J. Zhao, B. Xu, Z. Chi, Chem. Eng. J. 2022, 429, 132346;
- 8cY. Zhang, Q. Sun, L. Yue, Y. Wang, S. Cui, H. Zhang, S. Xue, W. Yang, Adv. Sci. 2022, 9, 2103402;
- 8dY. Lei, J. Yang, W. Dai, Y. Lan, J. Yang, X. Zheng, J. Shi, B. Tong, Z. Cai, Y. Dong, Chem. Sci. 2021, 12, 6518–6525;
- 8eA. D. Nidhankar, Goudappagouda, V. C. Wakchaure, S. S. Babu, Chem. Sci. 2021, 12, 4216–4236.
- 9
- 9aX. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Adv. Mater. 2017, 29, 1606665;
- 9bN. Gan, H. Shi, Z. An, W. Huang, Adv. Funct. Mater. 2018, 28, 1802657;
- 9cC. Chen, Z. Chi, K. C. Chong, A. S. Batsanov, Z. Yang, Z. Mao, Z. Yang, B. Liu, Nat. Mater. 2021, 20, 175–180;
- 9dW. Ye, H. Ma, H. Shi, H. Wang, A. Lv, L. Bian, M. Zhang, C. Ma, K. Ling, M. Gu, Y. Mao, X. Yao, C. Gao, K. Shen, W. Jia, J. Zhi, S. Cai, Z. Song, J. Li, Y. Zhang, S. Lu, K. Liu, C. Dong, Q. Wang, Y. Zhou, W. Yao, Y. Zhang, H. Zhang, Z. Zhang, X. Hang, Z. An, X. Liu, W. Huang, Nat. Mater. 2021, 20, 1539–1544;
- 9eC. Qian, Z. Ma, X. Fu, X. Zhang, Z. Li, H. Jin, M. Chen, H. Jiang, X. Jia, Z. Ma, Adv. Mater. 2022, 34, 2200544;
- 9fX. Liang, X. F. Luo, Z. P. Yan, Y. X. Zheng, J. L. Zuo, Angew. Chem. Int. Ed. 2021, 60, 24437–24442; Angew. Chem. 2021, 133, 24642–24647;
- 9gY. Zhang, L. Gao, X. Zheng, Z. Wang, C. Yang, H. Tang, L. Qu, Y. Li, Y. Zhao, Nat. Commun. 2021, 12, 2297;
- 9hY. Wang, H. Gao, J. Yang, M. Fang, D. Ding, B. Z. Tang, Z. Li, Adv. Mater. 2021, 33, 2007811;
- 9iX. Dou, T. Zhu, Z. Wang, W. Sun, Y. Lai, K. Sui, Y. Tan, Y. Zhang, W. Z. Yuan, Adv. Mater. 2020, 32, 2004768.
- 10Z. Wang, L. Gao, Y. Zheng, Y. Zhu, Y. Zhang, X. Zheng, C. Wang, Y. Li, Y. Zhao, C. Yang, Angew. Chem. Int. Ed. 2022, 61, e202203254; Angew. Chem. 2022, 134, e202203254.
- 11
- 11aB. Xu, Z. Song, M. Zhang, Q. Zhang, L. Jiang, C. Xu, L. Zhong, C. Su, Q. Ban, C. Liu, F. Sun, Y. Zhang, Z. Chi, Z. Zhao, G. Shi, Chem. Sci. 2021, 12, 15556–15562;
- 11bY. T. Zheng, L. Q. Zuo, L. T. Zhang, Z. H. Huang, S. F. Li, Z. Yang, Z. Mao, S. L. Luo, C. Liu, F. Q. Sun, G. Shi, Z. G. Chi, B. J. Xu, Chin. Chem. Lett. 2022, 33, 4536–4540.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.