Organoboron Reagent-Controlled Selective (Deutero)Hydrodefluorination
Zheng-Jia Shen
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chen Zhu
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorXiao Zhang
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorProf. Dr. Chao Yang
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Magnus Rueping
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Dr. Lin Guo
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wujiong Xia
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorZheng-Jia Shen
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chen Zhu
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
These authors contributed equally to this work.
Search for more papers by this authorXiao Zhang
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorProf. Dr. Chao Yang
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Magnus Rueping
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Prof. Dr. Lin Guo
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wujiong Xia
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorAbstract
(Deuterium-labeled) CF2H- and CFH2-moieties are of high interest in drug discovery. The high demand for the incorporation of these fluoroalkyl moieties into molecular structures has witnessed significant synthetic progress, particularly in the (deutero)hydrodefluorination of CF3-containing compounds. However, the controllable replacement of fluorine atoms while maintaining high chemoselectivity remains challenging. Herein, we describe the development of a selective (deutero)hydrodefluorination reaction via electrolysis. The reaction exhibits a remarkable chemoselectivity control, which is enabled by the addition of different organoboron sources. The procedure is operationally simple and scalable, and provides access in one step to high-value building blocks for application in medicinal chemistry. Furthermore, density functional theory (DFT) calculations have been carried out to investigate the reaction mechanism and to rationalize the chemoselectivity observed.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217244-sup-0001-misc_information.pdf17.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews, see:
- 1aS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330;
- 1bI. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009;
10.1002/9781444312096 Google Scholar
- 1cM. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633–10640.
- 2
- 2aK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 2bJ. Wang, M. Sánchez-Roselló, J. L. Acenã, C. D. Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506.
- 3
- 3aY. Zafrani, D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D. Marciano, E. Gershonov, S. Saphier, J. Med. Chem. 2017, 60, 797–804;
- 3bC. D. Sessler, M. Rahm, S. Becker, J. M. Goldberg, F. Wang, S. J. Lippard, J. Am. Chem. Soc. 2017, 139, 9325–9332;
- 3cY. Zafrani, G. Sod-Moriah, D. Yeffet, A. Berliner, D. Amir, D. Marciano, S. Elias, S. Katalan, N. Ashkenazi, M. Madmon, E. Gershonov, S. Saphier, J. Med. Chem. 2019, 62, 5628–5637;
- 3dJ. Kollonitsch, A. A. Patchett, S. Marburg, A. L. Maycock, L. M. Perkins, G. A. Doldouras, D. E. Duggan, S. D. Aster, Nature 1978, 274, 906–908;
- 3eJ. Hu, W. Zhang, F. Wang, Chem. Commun. 2009, 7465–7478.
- 4For selected reviews for the synthesis of CF2H- or CFH2-containing molecules, see:
- 4aG. Landelle, A. Panossian, S. Pazenok, J.-P. Vors, F. R. Leroux, Beilstein J. Org. Chem. 2013, 9, 2476–2536;
- 4bD. E. Yerien, S. Barata-Vallejo, A. Postigo, Chem. Eur. J. 2017, 23, 14676–14701;
- 4cJ. Rong, C. Ni, J. Hu, Asian J. Org. Chem. 2017, 6, 139–152;
- 4dT. Koike, M. Akita, Org. Biomol. Chem. 2019, 17, 5413–5419.
- 5For selected examples for difluoromethylation, see:
- 5aG. K. S. Prakash, S. K. Ganesh, J.-P. Jones, A. Kulkarni, K. Masood, J. K. Swabeck, G. A. Olah, Angew. Chem. Int. Ed. 2012, 51, 12090–12094; Angew. Chem. 2012, 124, 12256–12260;
- 5bY. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran, Nature 2012, 492, 95–99;
- 5cP. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524–5527;
- 5dY. Gu, X. Leng, Q. Shen, Nat. Commun. 2014, 5, 5405–5411;
- 5eL. Xu, D. A. Vicic, J. Am. Chem. Soc. 2016, 138, 2536–2539;
- 5fZ. Feng, Q.-Q. Min, X. Zhang, Org. Lett. 2016, 18, 44–47;
- 5gX.-J. Tang, W. R. Dolbier Jr., Angew. Chem. Int. Ed. 2015, 54, 4246–4249; Angew. Chem. 2015, 127, 4320–4323;
- 5hQ.-Y. Lin, X.-H. Xu, K. Zhang, F.-L. Qing, Angew. Chem. Int. Ed. 2016, 55, 1479–1483; Angew. Chem. 2016, 128, 1501–1505;
- 5iZ. Feng, Q. Min, X. P. Fu, L. An, X. Zhang, Nat. Chem. 2017, 9, 918–923;
- 5jC. F. Meyer, S. M. Hell, A. Misale, A. A. Trabanco, V. Gouverneur, Angew. Chem. Int. Ed. 2019, 58, 8829–8833; Angew. Chem. 2019, 131, 8921–8925.
- 6For selected examples for monofluoromethylation, see:
- 6aG. K. S. Prakash, I. Ledneczki, S. Chacko, G. A. Olah, Org. Lett. 2008, 10, 557–560;
- 6bY. Liu, L. Lu, Q. Shen, Angew. Chem. Int. Ed. 2017, 56, 9930–9934; Angew. Chem. 2017, 129, 10062–10066;
- 6cX. Shen, M. Zhou, C. Ni, W. Zhang, J. Hu, Chem. Sci. 2014, 5, 117–122;
- 6dN. Noto, T. Koike, M. Akita, ACS Catal. 2019, 9, 4382–4387;
- 6eR. Senatore, M. Malik, M. Spreitzer, W. Holzer, V. Pace, Org. Lett. 2020, 22, 1345–1349;
- 6fR. Cui, J. Sheng, B.-B. Wu, D.-D. Hu, H.-Q. Zheng, X.-S. Wang, Chem. Commun. 2021, 57, 9084–9087.
- 7
- 7aT. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115, 931–972;
- 7bF. Jaroschik, Chem. Eur. J. 2018, 24, 14572–14582;
- 7cX. Ma, Q. Song, Chem. Soc. Rev. 2020, 49, 9197–9219;
- 7dS. Yoshida, K. Shimomori, Y. Kim, T. Hosoya, Angew. Chem. Int. Ed. 2016, 55, 10406–10409; Angew. Chem. 2016, 128, 10562–10565;
- 7eD. Mandal, R. Gupta, A. K. Jaiswal, R. D. Young, J. Am. Chem. Soc. 2020, 142, 2572–2578.
- 8
- 8aD. O′Hagan, Chem. Soc. Rev. 2008, 37, 308–319;
- 8bY.-J. Yu, F.-L. Zhang, T.-Y. Peng, C.-L. Wang, J. Cheng, C. Chen, K. N. Houk, Y.-F. Wang, Science 2021, 371, 1232–1240;
- 8cJ.-H. Ye, P. Bellotti, C. Heusel, F. Glorius, Angew. Chem. Int. Ed. 2022, 61, e202115456; Angew. Chem. 2022, 134, e202115456;
- 8dJ. Wettergren, T. Ankner, G. Hilmersson, Chem. Commun. 2010, 46, 7596–7598;
- 8eM. W. Campbell, V. C. Polites, S. Patel, J. E. Lipson, J. Majhi, G. A. Molander, J. Am. Chem. Soc. 2021, 143, 19648–19654;
- 8fC. Liu, N. Shen, R. Shang, Nat. Commun. 2022, 13, 354–361;
- 8gX. Zhang, Y. Ning, Z. Liu, S. Li, G. Zanoni, X. Bi, ACS Catal. 2022, 12, 8802–8810.
- 9For selected reviews of C−F bond activation, see:
- 9aH. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183;
- 9bQ. Shen, Y.-G. Huang, C. Liu, J.-C. Xiao, Q.-Y. Chen, Y. Guo, J. Fluorine Chem. 2015, 179, 14–22.
- 10For selected reviews of monodefluorinative functionalization of trifluoro-methylarenes, see:
- 10aF. Zhao, W. Zhou, Z. Zuo, Adv. Synth. Catal. 2022, 364, 234–267;
- 10bT. T. Simur, T. Ye, Y.-J. Yu, F.-L. Zhang, Y.-F. Wang, Chin. Chem. Lett. 2022, 33, 1193–1198.
- 11For selected examples, see:
- 11aK. Chen, N. Berg, R. Gschwind, B. König, J. Am. Chem. Soc. 2017, 139, 18444–18447;
- 11bH. Wang, N. T. Jui, J. Am. Chem. Soc. 2018, 140, 163–166;
- 11cD. B. Vogt, C. P. Seath, H. Wang, N. T. Jui, J. Am. Chem. Soc. 2019, 141, 13203–13211;
- 11dC. Luo, J. S. Bandar, J. Am. Chem. Soc. 2019, 141, 14120–14125;
- 11eJ. B. I. Sap, N. J. W. Straatho, T. Knauber, C. F. Meyer, M. Medebielle, L. Buglioni, C. Genicot, A. A. Trabanco, T. Noël, C. W. Ende, V. Gouverneur, J. Am. Chem. Soc. 2020, 142, 9181–9187;
- 11fN. Sugihara, K. Suzuki, Y. Nishimoto, M. Yasuda, J. Am. Chem. Soc. 2021, 143, 9308–9313;
- 11gY.-C. Luo, F.-F. Tong, Y. Zhang, C.-Y. He, X. Zhang, J. Am. Chem. Soc. 2021, 143, 13971–13979.
- 12X. Zhang, X. Zhang, Q. Song, P. Sivaguru, Z. Wang, G. Zanoni, X. Bi, Angew. Chem. Int. Ed. 2022, 61, e202116190; Angew. Chem. 2022, 134, e202116190.
- 13
- 13aM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 13bY. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485–4540;
- 13cT. H. Meyer, I. Choi, C. Tian, L. Ackermann, Chem 2020, 6, 2484–2496;
- 13dC. Schotten, T. P. Nicholls, R. A. Bourne, N. Kapur, B. N. Nguyen, C. E. Willans, Green Chem. 2020, 22, 3358–3375.
- 14
- 14aK. Uneyama, G. Mizutani, Chem. Commun. 1999, 613–614;
- 14bH. Amii, T. Kobayashi, Y. Hatamoto, K. Uneyama, Chem. Commun. 1999, 1323–1324;
- 14cK. Uneyama, G. Mizutani, K. Maeda, T. Kato, J. Org. Chem. 1999, 64, 6717–6723;
- 14dJ. R. Box, A. P. Atkins, A. J. J. Lennox, Chem. Sci. 2021, 12, 10252–10258.
- 15See the Supporting Information for more details.
- 16Deposition numbers 2110421 and 2110422 (for 3 r and 4 a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 17
- 17aK. B. Wiberg, Chem. Rev. 1955, 55, 713–743;
- 17bS. E. Scheppele, Chem. Rev. 1972, 72, 511–532;
- 17cM. Gómez-Gallego, M. A. Sierra, Chem. Rev. 2011, 111, 4857–4963;
- 17dE. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066–3072; Angew. Chem. 2012, 124, 3120–3126.
- 18
- 18aT. G. Gant, J. Med. Chem. 2014, 57, 3595–3611;
- 18bC. S. Elmore, R. A. Bragg, Bioorg. Med. Chem. Lett. 2015, 25, 167–171;
- 18cR. D. Tung, Future Med. Chem. 2016, 8, 491–494;
- 18dC. Schmidt, Nat. Biotechnol. 2017, 35, 493–494;
- 18eT. Pirali, M. Serafini, S. Cargnin, A. A. Genazzani, J. Med. Chem. 2019, 62, 5276–5297.
- 19X. Liu, H. Popli, O. Kwon, H. Malissa, X. Pan, B. Park, B. Choi, S. Kim, E. Ehrenfreund, C. Boehme, Z. V. Vardeny, Adv. Mater. 2020, 32, 2004421.
- 20
- 20aL. S. Busenlehner, R. N. Armstrong, Arch. Biochem. Biophys. 2005, 433, 34–46;
- 20bJ. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew. Chem. Int. Ed. 2007, 46, 7744–7765; Angew. Chem. 2007, 119, 7890–7911.
- 21
- 21aY. Zhu, J. Zhou, B. Jiao, ACS Med. Chem. Lett. 2013, 4, 349–352;
- 21bA. Katsnelson, Nat. Med. 2013, 19, 656;
- 21cA. Mullard, Nat. Rev. Drug Discovery 2016, 15, 219–221;
- 21dY. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S. L. Colletti, I. W. Davies, D. W. C. MacMillan, Science 2017, 358, 1182–1187;
- 21eJ. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. Int. Ed. 2018, 57, 1758–1784; Angew. Chem. 2018, 130, 1774–1802.
- 22
- 22aG. K. S. Prakash, J. Hu, G. A. Olah, J. Fluorine Chem. 2001, 112, 357–362;
- 22bK. I. Burton, I. Elser, A. E. Waked, T. Wagener, R. J. Andrews, F. Glorius, D. W. Stephan, Chem. Eur. J. 2021, 27, 11730–11737;
- 22cS. E. Wright, J. S. Bandar, J. Am. Chem. Soc. 2022, 144, 13032–13038;
- 22dJ. J. Gair, R. L. Grey, S. Giroux, M. A. Brodney, Org. Lett. 2019, 21, 2482–2487.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.