ZnF2-Riched Inorganic/Organic Hybrid SEI: in situ-Chemical Construction and Performance-Improving Mechanism for Aqueous Zinc-ion Batteries
Dan Xie
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYuan Sang
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDan-Hong Wang
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorWan-Yue Diao
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorFang-Yu Tao
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorChang Liu
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jia-Wei Wang
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130012 P. R. China
Search for more papers by this authorProf. Hai-Zhu Sun
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jing-Ping Zhang
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xing-Long Wu
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorDan Xie
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYuan Sang
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDan-Hong Wang
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorWan-Yue Diao
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorFang-Yu Tao
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorChang Liu
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jia-Wei Wang
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130012 P. R. China
Search for more papers by this authorProf. Hai-Zhu Sun
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jing-Ping Zhang
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xing-Long Wu
Faculty of Chemistry, Northeast Normal University, Changchun, 130024 P. R. China
MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, 130024 P. R. China
Search for more papers by this authorAbstract
Uncontrolled dendrites growth and serious parasitic reactions in aqueous electrolytes, greatly hinder the practical application of aqueous zinc-ion battery. On the basis of in situ-chemical construction and performance-improving mechanism, multifunctional fluoroethylene carbonate (FEC) is introduced into aqueous electrolyte to construct a high-quality and ZnF2-riched inorganic/organic hybrid SEI (ZHS) layer on Zn metal anode (ZMA) surface. Notably, FEC additive can regulate the solvated structure of Zn2+ to reduce H2O molecules reactivity. Additionally, the ZHS layer with strong Zn2+ affinity can avoid dendrites formation and hinder the direct contact between the electrolyte and anode. Therefore, the dendrites growth, Zn corrosion, and H2 evolution reaction on ZMA in FEC-included ZnSO4 electrolyte are highly suppressed. Thus, ZMA in such electrolyte realize a long cycle life over 1000 h and deliver a stable coulombic efficiency of 99.1 % after 500 cycles.
Conflict of interest
There are no conflicts to declare.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202216934-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Hu, N. Dunlap, H. Long, H. Chen, L. J. Wayment, M. Ortiz, Y. Jin, A. Nijamudheen, J. L. Mendoza-Cortes, S.-h. Lee, W. Zhang, CCS Chem. 2021, 3, 2762;
- 1bW. Wang, X. Zhu, L. Fu, CCS Chem. 2021, 3, 686;
- 1cJ. Zhao, X. Yang, S. Li, N. Chen, C. Wang, Y. Zeng, F. Du, CCS Chem. 2021, 3, 2498;
- 1dC. Li, S. Jin, L. A. Archer, L. F. Nazar, Joule 2022, 6, 1733;
- 1eV. P. Hoang Huy, L. T. Hieu, J. Hur, Nanomaterials 2021, 11, 2746;
- 1fP. Cai, K. Wang, J. Ning, X. He, M. Chen, Q. Li, H. Li, M. Zhou, W. Wang, K. Jiang, Adv. Energy Mater. 2022, 12, 2202182;
- 1gY. Heng, Z. Gu, J. Guo, X. Wu, Acta Phys.-Chim. Sin. 2021, 37, 2005013.
- 2
- 2aY. Wang, Z. Deng, B. Luo, G. Duan, S. Zheng, L. Sun, Z. Ye, J. Lu, J. Huang, Y. Lu, Adv. Funct. Mater. 2022, 32, 2209028;
- 2bJ. Yang, Y. Zhang, Z. Li, X. Xu, X. Su, J. Lai, Y. Liu, K. Ding, L. Chen, Y. P. Cai, Q. Zheng, Adv. Funct. Mater. 2022, 32, 2209642;
- 2cW. Li, K. Wang, S. Cheng, K. Jiang, Adv. Energy Mater. 2019, 9, 1900993;
- 2dZ. Pei, Nano Res. Energy 2022, 1, e9120023;
- 2eH. Li, Y. Shen, Z. Zhang, A. Cheng, K. Wang, X. Zhou, P. Cai, Y. Zhang, M. Li, M. Zhou, W. Wang, R. Wang, K. Jiang, iEnergy 2022, 1, 204.
- 3
- 3aK. Wang, T. Qiu, L. Lin, X. X. Liu, X. Sun, Energy Storage Mater. 2022, 54, 366–373;
- 3bZ. J. Hong, Z. Ahmad, V. Viswanathan, ACS Energy Lett. 2020, 5, 2466;
- 3cY. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang, J. Mao, Z. Guo, Small 2022, 18, 2107033.
- 4
- 4aX. Guo, Z. Zhang, J. Li, N. Luo, G. L. Chai, T. S. Miller, F. Lai, P. Shearing, D. J. L. Brett, D. Han, Z. Weng, G. He, I. P. Parkin, ACS Energy Lett. 2021, 6, 395;
- 4bC. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 2021, 6, 1015;
- 4cH. Huang, D. Xie, J. Zhao, P. Rao, W. M. Choi, K. Davey, J. Mao, Adv. Energy Mater. 2022, 12, 2202419;
- 4dH.-J. Liang, Z.-Y. Gu, X.-X. Zhao, J.-Z. Guo, J.-L. Yang, W.-H. Li, B. Li, Z.-M. Liu, Z.-H. Sun, J.-P. Zhang, X.-L. Wu, Sci. Bull. 2022, 67, 1581;
- 4eX. Zhang, J.-P. Hu, N. Fu, W.-B. Zhou, B. Liu, Q. Deng, X.-W. Wu, InfoMat 2022, 4, e12306.
- 5
- 5aY. H. Wang, S. Zheng, W. M. Yang, R. Y. Zhou, Q. F. He, P. Radjenovic, J. C. Dong, S. Li, J. Zheng, Z. L. Yang, G. Attard, F. Pan, Z. Q. Tian, J. F. Li, Nature 2021, 600, 81;
- 5bL. Miao, R. Wang, S. Di, Z. Qian, L. Zhang, W. Xin, M. Liu, Z. Zhu, S. Chu, Y. Du, N. Zhang, ACS Nano 2022, 16, 9667;
- 5cJ. Xu, W. Lv, W. Yang, Y. Jin, Q. Jin, B. Sun, Z. Zhang, T. Wang, L. Zheng, X. Shi, B. Sun, G. Wang, ACS Nano 2022, 16, 11392.
- 6
- 6aZ. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Adv. Energy Mater. 2021, 11, 2003065;
- 6bZ. Hou, B. Zhang, EcoMat 2022, e12265;
- 6cY. Tian, S. Chen, Y. He, Q. Chen, L. Zhang, J. Zhang, Nano Res. Energy 2022, 1, e9120025;
- 6dM. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen, Y. Xu, J. Sun, M. Chuai, X. Zheng, Y. Yuan, C. Shen, Z. Zhang, W. Chen, eScience 2022, 2, 509–517.
- 7
- 7aJ. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao, H. Qiu, S. Dong, X. Zhou, G. Cui, L. Chen, Nano Energy 2019, 57, 625–634;
- 7bX. Lin, G. Zhou, M. J. Robson, J. Yu, S. C. T. Kwok, F. Ciucci, Adv. Funct. Mater. 2022, 32, 2109322.
- 8
- 8aF. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543;
- 8bC. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D. P. Leonard, I. A. Rodriguez-Perez, J. X. Jiang, C. Fang, X. Ji, Chem. Commun. 2018, 54, 14097–14099.
- 9
- 9aF. Ming, Y. Zhu, G. Huang, A. H. Emwas, H. Liang, Y. Cui, H. N. Alshareef, J. Am. Chem. Soc. 2022, 144, 7160–7170;
- 9bL. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 21404–21409.
- 10
- 10aW. Deng, Z. Xu, X. Wang, Energy Storage Mater. 2022, 52, 52–60;
- 10bT. C. Li, Y. Lim, X. L. Li, S. Luo, C. Lin, D. Fang, S. Xia, Y. Wang, H. Y. Yang, Adv. Energy Mater. 2022, 12, 2103231;
- 10cC. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang, A. Hu, Z. Liu, X. Chen, Adv. Mater. 2021, 33, 2100445.
- 11
- 11aK. Zhao, G. Fan, J. Liu, F. Liu, J. Li, X. Zhou, Y. Ni, M. Yu, Y. M. Zhang, H. Su, Q. Liu, F. Cheng, J. Am. Chem. Soc. 2022, 144, 11129–11137;
- 11bZ. Hou, H. Tan, Y. Gao, M. Li, Z. Lu, B. Zhang, J. Mater. Chem. A 2020, 8, 19367–19374.
- 12
- 12aJ. He, H. Wang, Q. Zhou, S. Qi, M. Wu, F. Li, W. Hu, J. Ma, Small Methods 2021, 5, 2100441;
- 12bC. Yan, X. B. Cheng, Y. Tian, X. Chen, X. Q. Zhang, W. J. Li, J. Q. Huang, Q. Zhang, Adv. Mater. 2018, 30, 1707629;
- 12cX. Liu, X. Zheng, Y. Dai, W. Wu, Y. Huang, H. Fu, Y. Huang, W. Luo, Adv. Funct. Mater. 2021, 31, 2103522.
- 13
- 13aY. Lee, J. Lee, J. Lee, K. Kim, A. Cha, S. Kang, T. Wi, S. J. Kang, H. W. Lee, N. S. Choi, ACS Appl. Mater. Interfaces 2018, 10, 15270–15280;
- 13bX. Chen, X. Li, D. Mei, J. Feng, M. Y. Hu, J. Hu, M. Engelhard, J. Zheng, W. Xu, J. Xiao, J. Liu, J. G. Zhang, ChemSusChem 2014, 7, 549.
- 14
- 14aY. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao, C. C. Li, Adv. Mater. 2021, 33, 2007388;
- 14bS. Tao, C. Zhang, J. Zhang, Y. Jiao, M. Li, W. Lin, L. Ran, B. Clement, M. Lyu, I. Gentle, L. Wang, R. Knibbe, Chem. Eng. J. 2022, 446, 136607.
- 15P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Angew. Chem. Int. Ed. 2021, 60, 18247; Angew. Chem. 2021, 133, 18395.
- 16
- 16aF. Li, J. Liu, J. He, Y. Hou, H. Wang, D. Wu, J. Huang, J. Ma, Angew. Chem. Int. Ed. 2022, 61, e202205091; Angew. Chem. 2022, 134, e202205091;
- 16bD. Ortiz, I. Jimenez Gordon, J. P. Baltaze, O. Hernandez-Alba, S. Legand, V. Dauvois, G. Si Larbi, U. Schmidhammer, J. L. Marignier, J. F. Martin, J. Belloni, M. Mostafavi, S. Le Caer, ChemSusChem 2015, 8, 3605.
- 17H. Qin, W. Kuang, N. Hu, X. Zhong, D. Huang, F. Shen, Z. Wei, Y. Huang, J. Xu, H. He, Adv. Funct. Mater. 2022, 32, 2206695.
- 18
- 18aN. Chang, T. Li, R. Li, S. Wang, Y. Yin, H. Zhang, X. Li, Energy Environ. Sci. 2020, 13, 3527–3535;
- 18bB. J. Wang, R. Zheng, W. Yang, X. Han, C. Y. Hou, Q. H. Zhang, Y. G. Li, K. R. Li, H. Z. Wang, Adv. Funct. Mater. 2022, 32, 2112693.
- 19
- 19aQ. Meng, R. Zhao, P. Cao, Q. Bai, J. Tang, G. Liu, X. Zhou, J. Yang, Chem. Eng. J. 2022, 447, 137471;
- 19bX. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao, J. Liu, W. K. Pang, J. Liu, P. Rao, Q. Wang, J. Mao, Z. Guo, Energy Environ. Sci. 2021, 14, 5947–5957.
- 20
- 20aK. Guan, L. Tao, R. Yang, H. Zhang, N. Wang, H. Wan, J. Cui, J. Zhang, H. Wang, H. Wang, Adv. Energy Mater. 2022, 12, 2103557;
- 20bD. Xie, Z. W. Wang, Z. Y. Gu, W. Y. Diao, F. Y. Tao, C. Liu, H. Z. Sun, X. L. Wu, J. W. Wang, J. P. Zhang, Adv. Funct. Mater. 2022, 32, 2204066.
- 21X. Nie, L. Miao, W. Yuan, G. Ma, S. Di, Y. Wang, S. Shen, N. Zhang, Adv. Funct. Mater. 2022, 32, 2203905.
- 22X. S. Xie, S. Q. Liang, J. W. Gao, S. Guo, J. B. Guo, C. Wang, G. Y. Xu, X. W. Wu, G. Chen, J. Zhou, Energy Environ. Sci. 2020, 13, 503–510.
- 23
- 23aC. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian, G. Chang, Y. Zhang, Q. Tang, A. Hu, X. Chen, Adv. Funct. Mater. 2022, 32, 2112091;
- 23bH. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu, B. B. Xu, H. Pan, K. Tao, Y. Jiang, Adv. Funct. Mater. 2021, 31, 2103514.
- 24Q. Li, A. Chen, D. Wang, Z. Pei, C. Zhi, Joule 2022, 6, 273.
- 25
- 25aB. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu, C. Wang, A. Pan, S. Liang, J. Mater. Chem. A 2019, 7, 940–945;
- 25bT. He, Y. Ye, H. Li, S. Weng, Q. Zhang, M. Li, T. Liu, J. Cheng, X. Wang, J. Lu, B. Wang, Mater. Today 2021, 43, 53–61.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.