A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation
Linlong Dai
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
Search for more papers by this authorYuheng Liu
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorQing Xu
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorMeifang Wang
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorDr. Qiaohong Zhu
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorProf. Dr. Peiyuan Yu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guofu Zhong
Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaofei Zeng
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorLinlong Dai
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
Search for more papers by this authorYuheng Liu
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorQing Xu
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorMeifang Wang
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorDr. Qiaohong Zhu
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorProf. Dr. Peiyuan Yu
Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guofu Zhong
Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaofei Zeng
College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
Search for more papers by this authorAbstract
Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202216534-sup-0001-misc_information.pdf7.5 MB | Supporting Information |
ange202216534-sup-0001-SI_cu_211108_daill_zxf_1_0m.cif619.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY.-B. Wang, P. Yu, Z.-P. Zhou, J. Zhang, J. Wang, S.-H. Luo, Q.-S. Gu, K. N. Houk, B. Tan, Nat. Catal. 2019, 2, 504–513;
- 1bJ. F. Teichert, B. L. Feringa, Angew. Chem. Int. Ed. 2010, 49, 2486–2528; Angew. Chem. 2010, 122, 2538–2582;
- 1cW. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029–3070;
- 1dR. B. Sunoj, Acc. Chem. Res. 2016, 49, 1019–1028;
- 1eM. Shibasaki, S. Matsunaga, Chem. Soc. Rev. 2006, 35, 269–279;
- 1fY.-M. Li, F.-Y. Kwong, W.-Y. Yu, A. S. C. Chan, Coord. Chem. Rev. 2007, 251, 2119–2144;
- 1gY. Chen, S. Yekta, A. K. Yudin, Chem. Rev. 2003, 103, 3155–3212;
- 1hM. P. Carroll, P. J. Guiry, Chem. Soc. Rev. 2014, 43, 819–833;
- 1iB. A. Lanman, A. T. Parsons, S. G. Zech, Acc. Chem. Res. 2022, 55, 2892–2903;
- 1jM. Basilaia, M. H. Chen, J. Secka, J. L. Gustafson, Acc. Chem. Res. 2022, 55, 2904–2919;
- 1kA.-C. C. Carlsson, S. Karlsson, R. H. Munday, M. R. Tatton, Acc. Chem. Res. 2022, 55, 2938–2948.
- 2
- 2aS. R. LaPlante, L. D. Fader, K. R. Fandrick, D. R. Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, P. J. Edwards, J. Med. Chem. 2011, 54, 7005–7022;
- 2bY.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534–547;
- 2cJ. Clayden, W. J. Moran, P. J. Edwards, S. R. LaPlante, Angew. Chem. Int. Ed. 2009, 48, 6398–6401; Angew. Chem. 2009, 121, 6516–6520;
- 2dG. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem. Rev. 2011, 111, 563–639;
- 2eJ. E. Smyth, N. M. Butler, P. A. Keller, Nat. Prod. Rep. 2015, 32, 1562–1583.
- 3
- 3aO. Baudoin, Eur. J. Org. Chem. 2005, 4223–4229;
- 3bD. Zhang, Q. Wang, Coord. Chem. Rev. 2015, 286, 1–16;
- 3cP. Loxq, E. Manoury, R. Poli, E. Deydier, A. Labande, Coord. Chem. Rev. 2016, 308, 131–190;
- 3dG. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514–8523;
- 3eG. Ma, M. P. Sibi, Chem. Eur. J. 2015, 21, 11644–11657;
- 3fJ. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418–3430;
- 3gJ. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805–4902;
- 3hJ. A. Carmona, C. Rodríguez-Franco, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Soc. Rev. 2021, 50, 2968–2983.
- 4S.-C. Zheng, S. Wu, Q. Zhou, L. W. Chung, L. Ye, B. Tan, Nat. Commun. 2017, 8, 15238.
- 5
- 5aX. Zhang, J. Wang, S.-D. Yang, ACS Catal. 2021, 11, 14008–14015;
- 5bS. Zhu, Y.-H. Chen, Y.-B. Wang, P. Yu, S.-Y. Li, S.-H. Xiang, J.-Q. Wang, J. Xiao, B. Tan, Nat. Commun. 2019, 10, 4268;
- 5cY.-H. Chen, H.-H. Li, X. Zhang, S.-H. Xiang, S. Li, B. Tan, Angew. Chem. Int. Ed. 2020, 59, 11374–11378; Angew. Chem. 2020, 132, 11470–11474;
- 5dJ. Feng, B. Li, Y. He, Z. Gu, Angew. Chem. Int. Ed. 2016, 55, 2186–2190; Angew. Chem. 2016, 128, 2226–2230;
- 5eC. Pan, Z. Zhu, M. Zhang, Z. Gu, Angew. Chem. Int. Ed. 2017, 56, 4777–4781; Angew. Chem. 2017, 129, 4855–4859.
- 6
- 6aH.-Y. Bai, F.-X. Tan, T.-Q. Liu, G.-D. Zhu, J.-M. Tian, T.-M. Ding, Z.-M. Chen, S.-Y. Zhang, Nat. Commun. 2019, 10, 3063;
- 6bJ. Frey, A. Malekafzali, I. Delso, S. Choppin, F. Colobert, J. Wencel-Delord, Angew. Chem. Int. Ed. 2020, 59, 8844–8848; Angew. Chem. 2020, 132, 8929–8933.
- 7
- 7aA. J. Fugard, A. S. K. Lahdenperä, J. S. J. Tan, A. Mekareeya, R. S. Paton, M. D. Smith, Angew. Chem. Int. Ed. 2019, 58, 2795–2798; Angew. Chem. 2019, 131, 2821–2824;
- 7bV. C. Fäseke, C. Sparr, Chem. Eur. J. 2016, 55, 7261–7264;
10.1002/anie.201602689 Google Scholar
- 7cQ.-J. Yao, P.-P. Xie, Y.-J. Wu, Y.-L. Feng, M.-Y. Teng, X. Hong, B.-F. Shi, J. Am. Chem. Soc. 2020, 142, 18266–18276;
- 7dH. Li, X. Yan, J. Zhang, W. Guo, J. Jiang, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 6732–6736; Angew. Chem. 2019, 131, 6804–6808;
- 7eD. Li, S. Wang, S. Ge, S. Dong, X. Feng, Org. Lett. 2020, 22, 5331–5336;
- 7fS.-L. Li, C. Yang, Q. Wu, H.-L. Zheng, X. Li, J.-P. Cheng, J. Am. Chem. Soc. 2018, 140, 12836–12843;
- 7gX. Fan, X. Zhang, C. Li, Z. Gu, ACS Catal. 2019, 9, 2286–2291;
- 7hC. Min, Y. Lin, D. Seidel, Angew. Chem. Int. Ed. 2017, 56, 15353–15357; Angew. Chem. 2017, 129, 15555–15559;
- 7iM. Augé, A. Feraldi-Xypolia, M. Barbazanges, C. Aubert, L. Fensterbank, V. Gandon, E. Kolodziej, C. Ollivier, Org. Lett. 2015, 17, 3754–3757.
- 8
- 8aK. Yang, Y. Mao, J. Xu, H. Wang, Y. He, W. Li, Q. Song, J. Am. Chem. Soc. 2021, 143, 10048–10053;
- 8bJ. Yang, J.-W. Zhang, W. Bao, S.-Q. Qiu, S. Li, S.-H. Xiang, J. Song, J. Zhang, B. Tan, J. Am. Chem. Soc. 2021, 143, 12924–12929;
- 8cM. Birepinte, F. Robert, S. Pinet, L. Chabaud, M. Pucheault, Org. Biomol. Chem. 2020, 18, 3007–3011.
- 9
- 9aK. C. Nicolaou, C. N. C. Boddy, J. Am. Chem. Soc. 2002, 124, 10451–10455;
- 9bB. M. Duggan, D. J. Craik, J. Med. Chem. 1997, 40, 2259–2265;
- 9cB. M. Crowley, D. L. Boger, J. Am. Chem. Soc. 2006, 128, 2885–2892.
- 10
- 10aF. Fang, M.-M. Xue, M. Ding, J. Zhang, S. Li, X. Chen, Chem. Asian J. 2021, 16, 2489–2494;
- 10bR. Wang, Y. Wu, J. Wang, H. Huang, Y. Wang, S. Xu, F. Zhao, J. Mol. Struct. 2022, 1257, 132642;
- 10cM. Mohankumar, M. Holler, E. Meichsner, J.-F. Nierengarten, F. Niess, J.-P. Sauvage, B. Delavaux-Nicot, E. Leoni, F. Monti, J. M. Malicka, M. Cocchi, E. Bandini, N. Armaroli, J. Am. Chem. Soc. 2018, 140, 2336–2347;
- 10dC. Bolzati, A. Boschi, L. Uccelli, F. Tisato, F. Refosco, A. Cagnolini, A. Duatti, S. Prakash, G. Bandoli, A. Vittadini, J. Am. Chem. Soc. 2002, 124, 11468–11479;
- 10eG. M. Adams, A. S. Weller, Coord. Chem. Rev. 2018, 355, 150–172.
- 11K. Fuji, T. Oka, T. Kawabata, T. Kinoshita, Tetrahedron 1998, 39, 1373–1376.
- 12M. S. Betson, J. Clayden, C. P. Worrall, S. Peace, Angew. Chem. Int. Ed. 2006, 45, 5803–5807; Angew. Chem. 2006, 118, 5935–5939.
- 13B. Yuan, A. Page, C. P. Worrall, F. Escalettes, S. C. Willies, J. J. W. McDouall, N. J. Turner, J. Clayden, Angew. Chem. Int. Ed. 2010, 49, 7010–7013; Angew. Chem. 2010, 122, 7164–7167.
- 14A. N. Dinh, R. R. Noorbehesht, S. T. Toenjes, A. C. Jackson, M. A. Saputra, S. M. Maddox, J. L. Gustafson, Synlett 2018, 29, 2155–2160.
- 15
- 15aS. D. Vaidya, S. T. Toenjes, N. Yamamoto, S. M. Maddox, J. L. Gustafson, J. Am. Chem. Soc. 2020, 142, 2198–2203;
- 15bS. D. Vaidya, B. S. Heydari, S. T. Toenjes, J. L. Gustafson, J. Org. Chem. 2022, 87, 6760–6768.
- 16
- 16aD. Zhu, L. Yu, H.-Y. Luo, X.-S. Xue, Z.-M. Chen, Angew. Chem. Int. Ed. 2022, 61, e202211782; Angew. Chem. 2022, 134, e202211782;
- 16bC.-Q. Guo, C.-J. Lu, L.-W. Zhan, P. Zhang, Q. Xu, J. Feng, R.-R. Liu, Angew. Chem. Int. Ed. 2022, 61, e202212846; Angew. Chem. 2022, 134, e202212846;
- 16cJ. Qin, T. Zhou, T.-P. Zhou, L. Tang, H. Zuo, H. Yu, G. Wu, Y. Wu, R.-Z. Liao, F. Zhong, Angew. Chem. Int. Ed. 2022, 61, e202205159; Angew. Chem. 2022, 134, e202205159.
- 17
- 17aR. Maji, S. C. Mallojjala, S. E. Wheeler, Chem. Soc. Rev. 2018, 47, 1142–1158;
- 17bZ.-L. Xia, Q.-F. Xu, C. Zheng, S.-L. You, Chem. Soc. Rev. 2020, 49, 286–300;
- 17cB.-C. Da, S.-H. Xiang, S. Li, B. Tan, Chin. J. Chem. 2021, 39, 1787–1796;
- 17dT. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. Int. Ed. 2004, 43, 1566–1568; Angew. Chem. 2004, 116, 1592–1594;
- 17eD. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357;
- 17fT. Akiyama, Chem. Rev. 2007, 107, 5744–5758;
- 17gJ. Merad, G. Lalli, G. Bernadat, J. Maur, G. Masson, Chem. Eur. J. 2018, 24, 3925;
- 17hD. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2017, 117, 10608–10620.
- 18
- 18aJ. Zhang, J. Wang, Angew. Chem. Int. Ed. 2018, 57, 465–469; Angew. Chem. 2018, 130, 474–478;
- 18bD. Guo, J. Zhang, B. Zhang, J. Wang, Org. Lett. 2018, 20, 6284–6288;
- 18cJ. A. Carmona, C. Rodríguez-Franco, J. López-Serrano, A. Ros, J. Iglesias-Sigüenza, R. Fernández, J. M. Lassaletta, V. Hornillos, ACS Catal. 2021, 11, 4117–4124;
- 18dY.-D. Shao, J.-S. Feng, D.-D. Han, K.-H. Pan, L. Zhang, Y.-F. Wang, Z.-H. Ma, P.-R. Wang, M. Yin, D.-J. Cheng, Org. Chem. Front. 2022, 9, 764–770;
- 18eY. Zhang, C.-S. Lim, D. S. B. Sim, H.-J. Pan, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 1399–1403; Angew. Chem. 2014, 126, 1423–1427;
- 18fQ.-A. Chen, M.-W. Chen, C.-B. Yu, L. Shi, D.-S. Wang, Y. Yang, Y.-G. Zhou, J. Am. Chem. Soc. 2011, 133, 16432–16435;
- 18gJ. Chen, B. Gao, X. Feng, W. Meng, H. Du, Org. Lett. 2021, 23, 8565–8569;
- 18hD. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621–6686;
- 18iC. Zheng, S.-L. You, Chem. Soc. Rev. 2012, 41, 2498–2518.
- 19K. Mori, T. Itakura, T. Akiyama, Angew. Chem. Int. Ed. 2016, 55, 11642–11646; Angew. Chem. 2016, 128, 11814–11818.
- 20
- 20aD. Shen, Q. Chen, P. Yan, X.-F. Zeng, G. Zhong, Angew. Chem. Int. Ed. 2017, 56, 3242–3246; Angew. Chem. 2017, 129, 3290–3294;
- 20bJ. Lu, R. Xu, H. Zeng G Zhong, M. Wang, Z. Ni, X.-F. Zeng, Org. Lett. 2021, 23, 3426–3431;
- 20cJ. Hu, S. Pan, S. Zhu, P. Yu, R. Xu, G. Zhong, X.-F. Zeng, J. Org. Chem. 2020, 85, 7896–7904;
- 20dL. Dai, Q. Zhu, J. Zeng, Y. Lu, G. Zhong, X.-Y. Han, X.-F. Zeng, Org. Chem. Front. 2022, 9, 2994–2999;
- 20eR. Xu, K. Li, J. Wang, J. Lu, L. Pan, X.-F. Zeng, G. Zhong, Chem. Commun. 2020, 56, 8404–8407.
- 21
- 21aX. Su, W. Zhou, Y. Li, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 6874–6877; Angew. Chem. 2015, 127, 6978–6981;
- 21bY. Wu, M. Li, J. Sun, G. Zheng, Q. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202117340; Angew. Chem. 2022, 134, e202117340.
- 22Deposition Number 2145524 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.