Fabrication of Integrated Copper-Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Spray-Drying Method: Highly Enhanced CO2 Hydrogenation Activity for Methanol Synthesis
Corresponding Author
Yuko Mitsuka
SHOEI CHEMICAL INC., 5-3, Aza-wakazakura, Fujinoki-machi, Tosu-shi Saga, 841-0048 Japan
Search for more papers by this authorDr. Naoki Ogiwara
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
Search for more papers by this authorMegumi Mukoyoshi
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Hiroshi Kitagawa
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
Search for more papers by this authorTomokazu Yamamoto
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Kyushu University and the Ultramicroscopy Research Center, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorTakaaki Toriyama
Kyushu University and the Ultramicroscopy Research Center, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorProf. Syo Matsumura
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Kyushu University and the Ultramicroscopy Research Center, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorProf. Masaaki Haneda
Advanced Ceramics Research Center, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu, 507-0071 Japan
Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showaku, Nagoya, 465-8555 Japan
Search for more papers by this authorDr. Shogo Kawaguchi
Japan Synchrotron Radiation Research Insitute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorProf. Yoshiki Kubota
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorCorresponding Author
Prof. Hirokazu Kobayashi
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
PRESTO (Japan) Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
Search for more papers by this authorCorresponding Author
Yuko Mitsuka
SHOEI CHEMICAL INC., 5-3, Aza-wakazakura, Fujinoki-machi, Tosu-shi Saga, 841-0048 Japan
Search for more papers by this authorDr. Naoki Ogiwara
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
Search for more papers by this authorMegumi Mukoyoshi
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Hiroshi Kitagawa
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
Search for more papers by this authorTomokazu Yamamoto
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Kyushu University and the Ultramicroscopy Research Center, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorTakaaki Toriyama
Kyushu University and the Ultramicroscopy Research Center, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorProf. Syo Matsumura
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Kyushu University and the Ultramicroscopy Research Center, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorProf. Masaaki Haneda
Advanced Ceramics Research Center, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu, 507-0071 Japan
Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showaku, Nagoya, 465-8555 Japan
Search for more papers by this authorDr. Shogo Kawaguchi
Japan Synchrotron Radiation Research Insitute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 Japan
Search for more papers by this authorProf. Yoshiki Kubota
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan
Search for more papers by this authorCorresponding Author
Prof. Hirokazu Kobayashi
Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606–8502 Japan
PRESTO (Japan) Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
Search for more papers by this authorAbstract
We report on Cu/amUiO-66, a composite made of Cu nanoparticles (NPs) and amorphous [Zr6O4(OH)4(BDC)6] (amUiO-66, BDC=1,4-benzenedicarboxylate), and Cu-ZnO/amUiO-66 made of Cu-ZnO nanocomposites and amUiO-66. Both structures were obtained via a spray-drying method and characterized using high-resolution transmission electron microscopy, energy dispersive spectra, powder X-ray diffraction and extended X-ray absorption fine structure. The catalytic activity of Cu/amUiO-66 for CO2 hydrogenation to methanol was 3-fold that of Cu/crystalline UiO-66. Moreover, Cu-ZnO/amUiO-66 enhanced the methanol production rate by 1.5-fold compared with Cu/amUiO-66 and 2.5-fold compared with γ-Al2O3-supported Cu-ZnO nanocomposites (Cu-ZnO/γ-Al2O3) as the representative hydrogenation catalyst. The high catalytic performance was investigated using in situ Fourier transform IR spectra. This is a first report of a catalyst comprising metal NPs and an amorphous metal–organic framework in a gas-phase reaction.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110585-sup-0001-misc_information.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430;
- 1bG. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380–1399;
- 1cP. Ramaswamy, N. E. Wong, G. K. Shimizu, Chem. Soc. Rev. 2014, 43, 5913–5932;
- 1dH. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Chem 2017, 2, 52–80;
- 1eJ. Troyano, A. Carne-Sanchez, C. Avci, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2019, 48, 5534–5546.
- 2
- 2aC. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Férey, M. Latroche, J. Am. Chem. Soc. 2010, 132, 2991–2997;
- 2bG. Li, H. Kobayashi, J. M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, H. Kitagawa, Nat. Mater. 2014, 13, 802–806;
- 2cH. Kobayashi, Y. Mitsuka, H. Kitagawa, Inorg. Chem. 2016, 55, 7301–7310.
- 3
- 3aJ.-D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, Angew. Chem. Int. Ed. 2016, 55, 9389–9393; Angew. Chem. 2016, 128, 9535–9539;
- 3bK. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. Barmanbek, A. S. Alshammari, P. Yang, O. M. Yaghi, J. Am. Chem. Soc. 2017, 139, 356–362;
- 3cQ. Yang, Q. Xu, H. L. Jiang, Chem. Soc. Rev. 2017, 46, 4774–4808;
- 3dJ. D. Xiao, L. Han, J. Luo, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 1103–1107; Angew. Chem. 2018, 130, 1115–1119;
- 3eN. Ogiwara, H. Kobayashi, P. Concepción, F. Rey, H. Kitagawa, Angew. Chem. Int. Ed. 2019, 58, 11731–11736; Angew. Chem. 2019, 131, 11857–11862.
- 4G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem. 2012, 4, 310–316.
- 5
- 5aM. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76–80;
- 5bG. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. 2018, 30, e1800702.
- 6
- 6aT. D. Bennett, S. Cao, J. C. Tan, D. A. Keen, E. G. Bithell, P. J. Beldon, T. Friscic, A. K. Cheetham, J. Am. Chem. Soc. 2011, 133, 14546–14549;
- 6bT. D. Bennett, A. K. Cheetham, Acc. Chem. Res. 2014, 47, 1555–1562;
- 6cA. D. Katsenis, A. Puskaric, V. Strukil, C. Mottillo, P. A. Julien, K. Uzarevic, M. H. Pham, T. O. Do, S. A. Kimber, P. Lazic, O. Magdysyuk, R. E. Dinnebier, I. Halasz, T. Friscic, Nat. Commun. 2015, 6, 6662;
- 6dT. D. Bennett, S. Horike, Nat. Rev. Mater. 2018, 3, 431–440;
- 6eN. Ogiwara, D. I. Kolokolov, M. Donoshita, H. Kobayashi, S. Horike, A. G. Stepanov, H. Kitagawa, Chem. Commun. 2019, 55, 5906–5909.
- 7
- 7aS. Tominaka, H. Hamoudi, T. Suga, T. D. Bennett, A. B. Cairns, A. K. Cheetham, Chem. Sci. 2015, 6, 1465–1473;
- 7bW. Chen, S. Horike, D. Umeyama, N. Ogiwara, T. Itakura, C. Tassel, Y. Goto, H. Kageyama, S. Kitagawa, Angew. Chem. Int. Ed. 2016, 55, 5195–5200; Angew. Chem. 2016, 128, 5281–5286.
- 8
- 8aD. Umeyama, N. P. Funnell, M. J. Cliffe, J. A. Hill, A. L. Goodwin, Y. Hijikata, T. Itakura, T. Okubo, S. Horike, S. Kitagawa, Chem. Commun. 2015, 51, 12728–12731;
- 8bA. Qiao, T. D. Bennett, H. Tao, A. Krajnc, G. Mali, C. M. Doherty, A. W. Thornton, J. C. Mauro, G. N. Greaves, Y. Yue, Sci. Adv. 2018, 4, eaao6827.
- 9
- 9aK. W. Chapman, D. F. Sava, G. J. Halder, P. J. Chupas, T. M. Nenoff, J. Am. Chem. Soc. 2011, 133, 18583–18585;
- 9bC. Orellana-Tavra, E. F. Baxter, T. Tian, T. D. Bennett, N. K. Slater, A. K. Cheetham, D. Fairen-Jimenez, Chem. Commun. 2015, 51, 13878–13881.
- 10
- 10aB. Li, H. C. Zeng, Chem. Mater. 2019, 31, 5320–5330;
- 10bC. Liu, J. Wang, J. Wan, Y. Cheng, R. Huang, C. Zhang, W. Hu, G. Wei, C. Yu, Angew. Chem. Int. Ed. 2020, 59, 3630–3637; Angew. Chem. 2020, 132, 3659–3666.
- 11J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850–13851.
- 12
- 12aB. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, K. M. Choi, O. M. Yaghi, G. A. Somorjai, Nano Lett. 2016, 16, 7645–7649;
- 12bB. An, J. Zhang, K. Cheng, P. Ji, C. Wang, W. Lin, J. Am. Chem. Soc. 2017, 139, 3834–3840;
- 12cH. Kobayashi, J. M. Taylor, Y. Mitsuka, N. Ogiwara, T. Yamamoto, T. Toriyama, S. Matsumura, H. Kitagawa, Chem. Sci. 2019, 10, 3289–3294.
- 13
- 13aT. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 2008, 14, 8456–8460;
- 13bH.-L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, J. Am. Chem. Soc. 2009, 131, 11302–11303.
- 14
- 14aM. Sabo, A. Henschel, H. Fröde, E. Klemm, S. Kaskel, J. Mater. Chem. 2007, 17, 3827–3832;
- 14bR. J. T. Houk, B. W. Jacobs, F. E. Gabaly, N. N. Chang, A. A. Talin, D. D. Graham, S. D. House, I. M. Robertson, M. D. Allendorf, Nano Lett. 2009, 9, 3413–3418;
- 14cQ. L. Zhu, J. Li, Q. Xu, J. Am. Chem. Soc. 2013, 135, 10210–10213.
- 15
- 15aS. Hermes, M. K. Schroter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer, R. A. Fischer, Angew. Chem. Int. Ed. 2005, 44, 6237–6241; Angew. Chem. 2005, 117, 6394–6397;
- 15bM. Müller, S. Hermes, K. Kähler, M. W. E. van den Berg, M. Muhler, R. A. Fischer, Chem. Mater. 2008, 20, 4576–4587;
- 15cD. W. Lim, J. W. Yoon, K. Y. Ryu, M. P. Suh, Angew. Chem. Int. Ed. 2012, 51, 9814–9817; Angew. Chem. 2012, 124, 9952–9955.
- 16
- 16aP. Hu, J. Zhuang, L. Y. Chou, H. K. Lee, X. Y. Ling, Y. C. Chuang, C. K. Tsung, J. Am. Chem. Soc. 2014, 136, 10561–10564;
- 16bC. Rosler, S. Dissegna, V. L. Rechac, M. Kauer, P. Guo, S. Turner, K. Ollegott, H. Kobayashi, T. Yamamoto, D. Peeters, Y. Wang, S. Matsumura, G. Van Tendeloo, H. Kitagawa, M. Muhler, I. X. F. X. Llabres, R. A. Fischer, Chem. Eur. J. 2017, 23, 3583–3594;
- 16cH. Noh, C.-W. Kung, T. Islamoglu, A. W. Peters, Y. Liao, P. Li, S. J. Garibay, X. Zhang, M. R. DeStefano, J. T. Hupp, O. K. Farha, Chem. Mater. 2018, 30, 2193–2197;
- 16dN. Ogiwara, H. Kobayashi, M. Inukai, Y. Nishiyama, P. Concepción, F. Rey, H. Kitagawa, Nano Lett. 2020, 20, 426–432.
- 17
- 17aA. Carne-Sanchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, Nat. Chem. 2013, 5, 203–211;
- 17bY. Mitsuka, K. Nagashima, H. Kobayashi, H. Kitagawa, Chem. Lett. 2016, 45, 1313–1315;
- 17cJ. Troyano, C. Çamur, L. Garzón-Tovar, A. Carné-Sánchez, I. Imaz, D. Maspoch, Acc. Chem. Res. 2020, 53, 1206–1217.
- 18T. D. Bennett, T. K. Todorova, E. F. Baxter, D. G. Reid, C. Gervais, B. Bueken, B. Van de Voorde, D. De Vos, D. A. Keen, C. Mellot-Draznieks, Phys. Chem. Chem. Phys. 2016, 18, 2192–2201.
- 19
- 19aM. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. A. Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tover, R. W. Fischer, J. K. Nørskov, R. Schlorl, Science 2012, 336, 893–897;
- 19bJ. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, Chem. Soc. Rev. 2020, 49, 1385–1413;
- 19cW. Wang, Z. Qu, L. Song, Q. Fu, J. Energy Chem. 2020, 40, 22–30.
- 20A. Dandekar, M. A. Vannice, J. Catal. 1998, 178, 621–639.
- 21K. Hadjiivanov, T. Venkov, H. Knözinger, Catal. Lett. 2001, 75, 55–59.
- 22T. Venkov, M. Dimitrov, K. Hadjiivanov, J. Mol. Catal. A Chem. 2006, 243, 8–16.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.