O-to-S Substitution Enables Dovetailing Conflicting Cyclizability, Polymerizability, and Recyclability: Dithiolactone vs. Dilactone
Yanchao Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorMaosheng Li
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorJinlong Chen
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Youhua Tao
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorXianhong Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorYanchao Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorMaosheng Li
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorJinlong Chen
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Youhua Tao
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorXianhong Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorAbstract
Developing chemically recyclable polymers represents a greener alternative to landfill and incineration and offers a closed-loop strategy toward a circular materials economy. However, the synthesis of chemically recyclable polymers is still plagued with certain fundamental limitations, including trade-offs between the monomer's cyclizability and polymerizability, as well as between polymer's depolymerizability and properties. Here we describe the subtle O-to-S substitution, dithiolactone monomers derived from abundant feedstock α-amino acids can demonstrate appealing chemical properties different from those of dilactone, including accelerated ring closure, augmented kinetics polymerizability, high depolymerizability and selectivity, and thus constitute a unique class of polythioester materials exhibiting controlled molecular weight (up to 100.5 kDa), atactic yet high crystallinity, structurally diversity, and chemical recyclability. These polythioesters well addresses the formidable challenges of developing chemically recyclable polymers by having an unusual set of desired properties, including easy-to-make monomer from ubiquitous feedstock, and high polymerizability, crystallinity and precise tunability of physicochemical performance, as well as high depolymerizability and selectivity. Computational studies explain why O-to-S modification of polymer backbone enables dovetailing desirable, but conflicting, performance into one polymer structure.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202109767-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. W. Coates, Y. D. Y. L. Getzler, Nat. Rev. Mater. 2020, 5, 501–516;
- 1bM. Mohadjer Beromi, C. R. Kennedy, J. M. Younker, A. E. Carpenter, S. J. Mattler, J. A. Throckmorton, P. J. Chirik, Nat. Chem. 2021, 13, 156;
- 1cJ. M. Garcia, M. L. Robertson, Science 2017, 358, 870–872;
- 1dH. Sardon, A. P. Dove, Science 2018, 360, 380–381;
- 1eD. J. Fortman, J. P. Brutman, G. X. De Hoe, R. L. Snyder, W. R. Dichtel, M. A. Hillmyer, ACS Sustainable Chem. Eng. 2018, 6, 11145–11159;
- 1fG. W. Fahnhorst, T. R. Hoye, ACS Macro Lett. 2018, 7, 143–147;
- 1gR. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, e1700782;
- 1hA.-C. Albertsson, M. Hakkarainen, Science 2017, 358, 872–873;
- 1iA. Rahimi, J. M. García, Nat. Rev. Chem. 2017, 1, 0046.
- 2
- 2aX. Tang, E. Y. X. Chen, Chem 2019, 5, 284–312;
- 2bA. Sangroniz, J.-B. Zhu, X. Tang, A. Etxeberria, E. Y. X. Chen, H. Sardon, Nat. Commun. 2019, 10, 3559;
- 2cC. B. Godiya, S. Gabrielli, S. Materazzi, M. S. Pianesi, N. Stefanini, E. Marcantoni, J. Environ. Manage. 2019, 231, 1012–1020;
- 2dX.-B. Lu, Y. Liu, H. Zhou, Chem. Eur. J. 2018, 24, 11255–11266;
- 2eY. Liu, H. Zhou, J.-Z. Guo, W.-M. Ren, X.-B. Lu, Angew. Chem. Int. Ed. 2017, 56, 4862–4866; Angew. Chem. 2017, 129, 4940–4944;
- 2fX. Jia, C. Qin, T. Friedberger, Z. Guan, Z. Huang, Sci. Adv. 2016, 2, e1501591;
- 2gM. Hong, E. Y. X. Chen, Angew. Chem. Int. Ed. 2016, 55, 4188–4193; Angew. Chem. 2016, 128, 4260–4265;
- 2hJ. D. Feist, Y. Xia, J. Am. Chem. Soc. 2020, 142, 1186–1189;
- 2iJ. P. MacDonald, M. P. Shaver, Polym. Chem. 2016, 7, 553–559.
- 3
- 3aH. Höcker, H. Keul, Adv. Mater. 1994, 6, 21–36;
- 3bT. Endo, K. Kakimoto, B. Ochiai, D. Nagai, Macromolecules 2005, 38, 8177–8182;
- 3cT. Endo, D. Nagai, Macromol. Symp. 2005, 226, 79–86;
- 3dP. Olsén, K. Odelius, A.-C. Albertsson, Biomacromolecules 2016, 17, 699–709.
- 4M. Hong, E. Y. X. Chen, Nat. Chem. 2016, 8, 42–49.
- 5J. Yuan, W. Xiong, X. Zhou, Y. Zhang, D. Shi, Z. Li, H. Lu, J. Am. Chem. Soc. 2019, 141, 4928–4935.
- 6
- 6aJ.-B. Zhu, E. M. Watson, J. Tang, E. Y. X. Chen, Science 2018, 360, 398–403;
- 6bJ.-B. Zhu, E. Y. X. Chen, Angew. Chem. Int. Ed. 2018, 57, 12558–12562; Angew. Chem. 2018, 130, 12738–12742.
- 7
- 7aC. Shi, M. L. McGraw, Z.-C. Li, L. Cavallo, L. Falivene, E. Y.-X. Chen, Sci. Adv. 2020, 6, eabc0495;
- 7bC. Shi, Z.-C. Li, L. Caporaso, L. Cavallo, L. Falivene, E. Y. X. Chen, Chem 2021, 7, 670–685.
- 8W. Xiong, W. Chang, D. Shi, L. Yang, Z. Tian, H. Wang, Z. Zhang, X. Zhou, E.-Q. Chen, H. Lu, Chem 2020, 6, 1831–1843.
- 9J.-B. Zhu, E. Y. X. Chen, Angew. Chem. Int. Ed. 2019, 58, 1178–1182; Angew. Chem. 2019, 131, 1190–1194.
- 10
- 10aP. P. Kalelkar, G. R. Alas, D. M. Collard, Macromolecules 2016, 49, 2609–2617;
- 10bM. O. Arıcan, S. Erdoğan, O. Mert, Macromolecules 2018, 51, 2817–2830.
- 11
- 11aB. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 3229–3238;
- 11bH. R. Kricheldorf, Chemosphere 2001, 43, 49–54.
- 12
- 12aJ. Hao, P. Kos, K. Zhou, J. B. Miller, L. Xue, Y. Yan, H. Xiong, S. Elkassih, D. J. Siegwart, J. Am. Chem. Soc. 2015, 137, 9206–9209;
- 12bB. Lin, R. M. Waymouth, J. Am. Chem. Soc. 2017, 139, 1645–1652;
- 12cM. S. Li, S. Zhang, X. Y. Zhang, Y. C. Wang, J. L. Chen, Y. H. Tao, X. H. Wang, Angew. Chem. Int. Ed. 2021, 60, 6003–6012; Angew. Chem. 2021, 133, 6068–6077;
- 12dM. S. Li, Y. Tao, J. D. Tang, Y. C. Wang, X. Y. Zhang, Y. H. Tao, X. H. Wang, J. Am. Chem. Soc. 2019, 141, 281–289.
- 13
- 13aX. Zhang, G. O. Jones, J. L. Hedrick, R. M. Waymouth, Nat. Chem. 2016, 8, 1047–1053;
- 13bA. Hermann, S. Hill, A. Metz, J. Heck, A. Hoffmann, L. Hartmann, S. Herres-Pawlis, Angew. Chem. Int. Ed. 2020, 59, 21778–21784; Angew. Chem. 2020, 132, 21962–21968;
- 13cO. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 2004, 104, 6147–6176.
- 14
- 14aO. Thillaye du Boullay, E. Marchal, B. Martin-Vaca, F. P. Cossío, D. Bourissou, J. Am. Chem. Soc. 2006, 128, 16442–16443;
- 14bR. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater. 2000, 12, 1841–1846;
- 14cP. Van Wouwe, M. Dusselier, E. Vanleeuw, B. Sels, ChemSusChem 2016, 9, 907–921;
- 14dJ. Park, H. Cho, D. Hwang, S. Kim, I. Moon, M. Kim, Ind. Eng. Chem. Res. 2018, 57, 11955–11962.
- 15R. J. Pounder, A. P. Dove, Biomacromolecules 2010, 11, 1930–1939.
- 16Y. C. Wang, M. S. Li, S. X. Wang, Y. H. Tao, X. H. Wang, Angew. Chem. Int. Ed. 2021, 60, 10798–10805; Angew. Chem. 2021, 133, 10893–10900.
- 17
- 17aH. R. Kricheldorf, K. Bösinger, Makromol. Chem. 1973, 173, 67–80;
- 17bV. A. Schöberl, Makromol. Chem. 1960, 37, 64–70.
- 18M. Suzuki, A. Watanabe, R. Kawai, R. Sato, S. Matsuoka, S. Kawauchi, Polymer 2021, 215, 123386.
- 19F. Jing, M. R. Smith III, G. L. Baker, Macromolecules 2007, 40, 9304–9312.
- 20F. Nederberg, E. F. Connor, M. Moller, T. Glauser, J. L. Hedrick, Angew. Chem. Int. Ed. 2001, 40, 2712–2715;
10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2784–2787.
- 21M. K. Kiesewetter, E. J. Shin, J. L. Hedrick, R. M. Waymouth, Macromolecules 2010, 43, 2093–2107.
- 22J.-B. Zhu, E. Y. X. Chen, J. Am. Chem. Soc. 2015, 137, 12506–12509.
- 23I. A. Shuklov, H. Jiao, J. Schulze, W. Tietz, K. Kuehlein, A. Boerner, Tetrahedron Lett. 2011, 52, 1027–1030.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.