Polyoxometalate-Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites
Dr. Yiwei Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorBingxue Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorCorresponding Author
Dr. Qiang Fu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Wei Liu
State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorDr. Yu Wang
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorProf. Lin Gu
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Yiwei Liu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorBingxue Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorCorresponding Author
Dr. Qiang Fu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Wei Liu
State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorDr. Yu Wang
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorProf. Lin Gu
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Dingsheng Wang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Yadong Li
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorAbstract
Achieving highly selective acetylene semi-hydrogenation in an ethylene-rich gas stream is of great industrial importance. Herein, we construct isolated single Pd atom in a polyoxometalate-based metal-organic framework (POMOF). The unique internal environment allows this POMOF to separate acetylene from acetylene/ethylene gas mixtures and confine it close to the single Pd atom. After semi-hydrogenation, the resulting ethylene is preferentially discharged from the pores, achieving a selectivity of 92.6 %. First-principles simulations reveal that the adsorbed acetylene/ethylene molecules form hydrogen bond networks with oxygen atoms of SiW12O404− and create dynamic confinement regions, which preferentially release the produced ethylene. Besides, at the Pd site, the over-hydrogenation of ethylene exhibits a higher reaction energy barrier than the semi-hydrogenation of acetylene. The combined advantages of POMOF and single Pd atom provides an effective approach for the regulation of semi-hydrogenation selectivity.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202109538-sup-0001-misc_information.pdf5.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. M. Torres Galvis, K. P. de Jong, ACS Catal. 2013, 3, 2130–2149;
- 1bM. Crespo-Quesada, F. Cárdenas-Lizana, A.-L. Dessimoz, L. Kiwi-Minsker, ACS Catal. 2012, 2, 1773–1786.
- 2
- 2aF. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sorensen, C. H. Christensen, J. K. Norskov, Science 2008, 320, 1320–1322;
- 2bM. Armbrüster, K. Kovnir, M. Friedrich, D. Teschner, G. Wowsnick, M. Hahne, P. Gille, L. Szentmiklósi, M. Feuerbacher, M. Heggen, F. Girgsdies, D. Rosenthal, R. Schlögl, Y. Grin, Nat. Mater. 2012, 11, 690–693;
- 2cE. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606–1610.
- 3
- 3aY. Chai, X. Han, W. Li, S. Liu, S. Yao, C. Wang, W. Shi, I. da Silva, P. Manuel, Y. Cheng, L. D. Daemen, A. J. Ramirez-Cuesta, C. C. Tang, L. Jiang, S. Yang, N. Guan, L. Li, Science 2020, 368, 1002–1006;
- 3bX. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, Science 2016, 353, 141–144;
- 3cL. Jiang, Y. Tian, T. Sun, Y. Zhu, H. Ren, X. Zou, Y. Ma, K. R. Meihaus, J. R. Long, G. Zhu, J. Am. Chem. Soc. 2018, 140, 15724–15730;
- 3dD. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437.
- 4
- 4aF. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng, Z. Jia, J. Xie, D. Xiao, X. Wen, N. Wang, Z. Jiang, H. Liu, D. Ma, Nat. Commun. 2019, 10, 4431;
- 4bA. J. McCue, J. A. Anderson, Front. Chem. Sci. Eng. 2015, 9, 142–153.
- 5
- 5aL. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 683–733;
- 5bS. Wang, Z. J. Zhao, X. Chang, J. Zhao, H. Tian, C. Yang, M. Li, Q. Fu, R. Mu, J. Gong, Angew. Chem. Int. Ed. 2019, 58, 7668–7672; Angew. Chem. 2019, 131, 7750–7754;
- 5cC. W. Chan, A. H. Mahadi, M. M. Li, E. C. Corbos, C. Tang, G. Jones, W. C. Kuo, J. Cookson, C. M. Brown, P. T. Bishop, S. C. Tsang, Nat. Commun. 2014, 5, 5787.
- 6
- 6aS. K. Kim, C. Kim, J. H. Lee, J. Kim, H. Lee, S. H. Moon, J. Catal. 2013, 306, 146–154;
- 6bY. He, J. Fan, J. Feng, C. Luo, P. Yang, D. Li, J. Catal. 2015, 331, 118–127;
- 6cF.-M. McKenna, J. A. Anderson, J. Catal. 2011, 281, 231–240;
- 6dA. D. Benavidez, P. D. Burton, J. L. Nogales, A. R. Jenkins, S. A. Ivanov, J. T. Miller, A. M. Karim, A. K. Datye, Appl. Catal. A 2014, 482, 108–115.
- 7
- 7aY. Xiong, W. Sun, Y. Han, P. Xin, X. Zheng, W. Yan, J. Dong, J. Zhang, D. Wang, Y. Li, Nano Res. 2021, 14, 2418–2423;
- 7bJ. Yang, W. Li, S. Tan, K. Xu, Y. Wang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 19085–19091; Angew. Chem. 2021, 133, 19233–19239;
- 7cX. Y. Li, H. P. Rong, J. T. Zhang, D. S. Wang, Y. D. Li, Nano Res. 2020, 13, 1842–1855;
- 7dJ. Yang, W. Li, D. Wang, Y. Li, Small Struct. 2020, 0, 2000051;
- 7eT. Cui, L. Ma, S. Wang, C. Ye, X. Liang, Z. Zhang, G. Meng, L. Zheng, H. Hu, J. Zhang, H. Duan, D. Wang, Y. Li, J. Am. Chem. Soc. 2021, 143, 9429–9439;
- 7fB. Zhang, G. Sun, S. Ding, H. Asakura, J. Zhang, P. Sautet, N. Yan, J. Am. Chem. Soc. 2019, 141, 8185–8197;
- 7gC. Tang, Y. Jiao, B. Shi, J. N. Liu, Z. Xie, X. Chen, Q. Zhang, S. Z. Qiao, Angew. Chem. Int. Ed. 2020, 59, 9171–9176; Angew. Chem. 2020, 132, 9256–9261;
- 7hC. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Chem. Rev. 2020, 120, 12175–12216;
- 7iX. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Science 2014, 344, 616–619;
- 7jJ. Gu, C. S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091–1094;
- 7kM. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang, S. Dai, W. Chen, Z. Zhao, P. Li, H. Fei, Y. Zhu, R. Yu, J. Luo, K. Zang, Z. Lin, M. Ding, J. Huang, H. Sun, J. Guo, X. Pan, W. A. Goddard, P. Sautet, Y. Huang, X. Duan, Nat. Catal. 2019, 2, 495–503;
- 7lJ. Zhang, C. Zheng, M. Zhang, Y. Qiu, Q. Xu, W.-C. Cheong, W. Chen, L. Zheng, L. Gu, Z. Hu, D. Wang, Y. Li, Nano Res. 2020, 13, 3082–3087;
- 7mY. N. Gong, L. Jiao, Y. Qian, C. Y. Pan, L. Zheng, X. Cai, B. Liu, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2020, 59, 2705–2709; Angew. Chem. 2020, 132, 2727–2731;
- 7nZ. Zhuang, Q. Kang, D. Wang, Y. Li, Nano Res. 2020, 13, 1856–1866;
- 7oQ. Sun, N. Wang, T. Zhang, R. Bai, A. Mayoral, P. Zhang, Q. Zhang, O. Terasaki, J. Yu, Angew. Chem. Int. Ed. 2019, 58, 18570–18576; Angew. Chem. 2019, 131, 18743–18749;
- 7pB. H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K. S. Lee, J. H. Kim, S. P. Cho, H. Kim, K. T. Nam, T. Hyeon, Nat. Mater. 2019, 18, 620–626;
- 7qB. Zhang, H. Asakura, J. Zhang, J. Zhang, S. De, N. Yan, Angew. Chem. Int. Ed. 2016, 55, 8319–8323; Angew. Chem. 2016, 128, 8459–8463;
- 7rM. J. Hulsey, B. Zhang, Z. Ma, H. Asakura, D. A. Do, W. Chen, T. Tanaka, P. Zhang, Z. Wu, N. Yan, Nat. Commun. 2019, 10, 1330;
- 7sY. Chen, R. Gao, S. Ji, H. Li, K. Tang, P. Jiang, H. Hu, Z. Zhang, H. Hao, Q. Qu, X. Liang, W. Chen, J. Dong, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 3212–3221; Angew. Chem. 2021, 133, 3249–3258;
- 7tM. J. Hülsey, G. Sun, P. Sautet, N. Yan, Angew. Chem. Int. Ed. 2021, 60, 4764–4773; Angew. Chem. 2021, 133, 4814–4823.
- 8
- 8aG. Hamm, T. Schmidt, J. Breitbach, D. Franke, C. Becker, K. Wandelt, Z. Phys. Chem. 2009, 223, 209–232;
- 8bM. Li, J. Shen, Thermochim. Acta 2001, 379, 45–50.
- 9
- 9aS. Zhou, L. Shang, Y. Zhao, R. Shi, G. I. N. Waterhouse, Y. C. Huang, L. Zheng, T. Zhang, Adv. Mater. 2019, 31, e1900509;
- 9bF. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng, Z. Jia, P. Ren, D. Xiao, X. Wen, N. Wang, H. Liu, D. Ma, J. Am. Chem. Soc. 2018, 140, 13142–13146;
- 9cH. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. Wang, J. Li, S. Wei, J. Lu, J. Am. Chem. Soc. 2015, 137, 10484–10487;
- 9dG. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. Lopez, J. Perez-Ramirez, Angew. Chem. Int. Ed. 2015, 54, 11265–11269; Angew. Chem. 2015, 127, 11417–11422.
- 10
- 10aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 10bA. Schoedel, Z. Ji, O. M. Yaghi, Nat. Energy 2016, 1, 16034;
- 10cJ. Jiang, O. M. Yaghi, Chem. Rev. 2015, 115, 6966–6997;
- 10dM. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76–80;
- 10eT. L. Hu, H. Wang, B. Li, R. Krishna, H. Wu, W. Zhou, Y. Zhao, Y. Han, X. Wang, W. Zhu, Z. Yao, S. Xiang, B. Chen, Nat. Commun. 2015, 6, 7328;
- 10fP. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80–84;
- 10gL. Vila-Nadal, L. Cronin, Nat. Rev. Mater. 2017, 2, 17054;
- 10hN. Li, J. Liu, B. X. Dong, Y. Q. Lan, Angew. Chem. Int. Ed. 2020, 59, 20779–20793; Angew. Chem. 2020, 132, 20963–20977;
- 10iX. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. 2006, 45, 10702–10711;
- 10jH. R. Moon, D. W. Lim, M. P. Suh, Chem. Soc. Rev. 2013, 42, 1807–1824;
- 10kZ. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Angew. Chem. Int. Ed. 2018, 57, 9604–9633; Angew. Chem. 2018, 130, 9750–9780.
- 11
- 11aT. He, S. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. Hu, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 3493–3498; Angew. Chem. 2018, 130, 3551–3556;
- 11bX. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo, H. L. Jiang, Adv. Mater. 2018, 30, 1705112.
- 12
- 12aW. T. Xu, B. B. Tu, Q. Liu, Y. F. Shu, C. C. Liang, C. S. Diercks, O. M. Yaghi, Y. B. Zhang, H. X. Deng, Q. W. Li, Nat. Rev. Mater. 2020, 5, 764–779;
- 12bP. Yang, W. Zhao, A. Shkurenko, Y. Belmabkhout, M. Eddaoudi, X. Dong, H. N. Alshareef, N. M. Khashab, J. Am. Chem. Soc. 2019, 141, 1847–1851.
- 13X. López, J. J. Carbó, C. Bo, J. M. Poblet, Chem. Soc. Rev. 2012, 41, 7537–7571.
- 14Y. Liu, Z. Li, Q. Yu, Y. Chen, Z. Chai, G. Zhao, S. Liu, W. C. Cheong, Y. Pan, Q. Zhang, L. Gu, L. Zheng, Y. Wang, Y. Lu, D. Wang, C. Chen, Q. Peng, Y. Liu, L. Liu, J. Chen, Y. Li, J. Am. Chem. Soc. 2019, 141, 9305–9311.
- 15C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, Z. M. Su, J. Am. Chem. Soc. 2009, 131, 1883–1888.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.