Photodriven Elimination of Chlorine From Germanium and Platinum in a Dinuclear PtII→GeIV Complex
Mohammadjavad Karimi
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Co-first authors
Search for more papers by this authorElham S. Tabei
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Co-first authors
Search for more papers by this authorRemi Fayad
Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204 USA
Search for more papers by this authorDr. Mohamed R. Saber
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorDr. Evgeny O. Danilov
Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204 USA
Search for more papers by this authorCameron Jones
School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Felix N. Castellano
Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. François P. Gabbaï
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorMohammadjavad Karimi
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Co-first authors
Search for more papers by this authorElham S. Tabei
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Co-first authors
Search for more papers by this authorRemi Fayad
Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204 USA
Search for more papers by this authorDr. Mohamed R. Saber
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorDr. Evgeny O. Danilov
Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204 USA
Search for more papers by this authorCameron Jones
School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Felix N. Castellano
Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. François P. Gabbaï
Department of Chemistry, Texas A&M University, College Station, TX, 77843 USA
Search for more papers by this authorAbstract
Searching for a connection between the two-electron redox behavior of Group-14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(o-(Ph2P)C6H4)2GeIVCl2]PtIICl2 and [(o-(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o-(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtII and GeIII–PtIII isomers, respectively. Conversion of the GeIV–PtII isomer into the platinum germyl complex is a rare example of a light-induced transition-metal/main-group-element bond-forming process. Finally, transient-absorption-spectroscopy studies carried out on the GeIII–PtIII isomer point to a ligand arene–Cl. charge-transfer complex as an intermediate.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202107485-sup-0001-misc_information.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Troian-Gautier, M. D. Turlington, S. A. M. Wehlin, A. B. Maurer, M. D. Brady, W. B. Swords, G. J. Meyer, Chem. Rev. 2019, 119, 4628–4683;
- 1bZ. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577–3613;
- 1cD. G. Nocera, Inorg. Chem. 2009, 48, 10001–10017;
- 1dA. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022–4047;
- 1eA. F. Heyduk, D. G. Nocera, Science 2001, 293, 1639–1641;
- 1fH. B. Gray, A. W. Maverick, Science 1981, 214, 1201–1205;
- 1gA. W. Maverick, H. B. Gray, Pure Appl. Chem. 1980, 52, 2339–2348.
- 2
- 2aS. A. M. Wehlin, L. Troian-Gautier, G. Li, G. J. Meyer, J. Am. Chem. Soc. 2017, 139, 12903–12906;
- 2bG. Li, W. M. Ward, G. J. Meyer, J. Am. Chem. Soc. 2015, 137, 8321–8323.
- 3
- 3aR. Fayad, S. Engl, E. O. Danilov, C. E. Hauke, O. Reiser, F. N. Castellano, J. Phys. Chem. Lett. 2020, 11, 5345–5349;
- 3bD. C. Powers, M. B. Chambers, T. S. Teets, N. Elgrishi, B. L. Anderson, D. G. Nocera, Chem. Sci. 2013, 4, 2880–2885;
- 3cT. S. Teets, D. A. Lutterman, D. G. Nocera, Inorg. Chem. 2010, 49, 3035–3043;
- 3dT. S. Teets, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 7411–7420.
- 4
- 4aD. C. Powers, S. J. Hwang, B. L. Anderson, H. Yang, S. L. Zheng, Y. S. Chen, T. R. Cook, F. P. Gabbaï, D. G. Nocera, Inorg. Chem. 2016, 55, 11815–11820;
- 4bT. A. Perera, M. Masjedi, P. R. Sharp, Inorg. Chem. 2014, 53, 7608–7621;
- 4cA. R. Karikachery, H. B. Lee, M. Masjedi, A. Ross, M. A. Moody, X. Cai, M. Chui, C. D. Hoff, P. R. Sharp, Inorg. Chem. 2013, 52, 4113–4119;
- 4dT. R. Cook, B. D. McCarthy, D. A. Lutterman, D. G. Nocera, Inorg. Chem. 2012, 51, 5152–5163;
- 4eT. R. Cook, Y. Surendranath, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 28–29;
- 4fT. R. Cook, A. J. Esswein, D. G. Nocera, J. Am. Chem. Soc. 2007, 129, 10094–10095.
- 5
- 5aH. Friedrich, Ber. Dtsch. Chem. Ges. 1893, 26, 1434–1436;
10.1002/cber.18930260249 Google Scholar
- 5bK. Seppelt, Angew. Chem. Int. Ed. Engl. 1976, 15, 377–378; Angew. Chem. 1976, 88, 410–411.
- 6
- 6aE. I. Carrera, A. E. Lanterna, A. J. Lough, J. C. Scaiano, D. S. Seferos, J. Am. Chem. Soc. 2016, 138, 2678–2689;
- 6bE. I. Carrera, D. S. Seferos, Dalton Trans. 2015, 44, 2092–2096;
- 6cE. I. Carrera, T. M. McCormick, M. J. Kapp, A. J. Lough, D. S. Seferos, Inorg. Chem. 2013, 52, 13779–13790.
- 7S. Sahu, F. P. Gabbaï, J. Am. Chem. Soc. 2017, 139, 5035–5038.
- 8C. M. Lemon, S. J. Hwang, A. G. Maher, D. C. Powers, D. G. Nocera, Inorg. Chem. 2018, 57, 5333–5342.
- 9H. Kameo, K. Ikeda, S. Sakaki, S. Takemoto, H. Nakazawa, H. Matsuzaka, Dalton Trans. 2016, 45, 7570–7580.
- 10L. Rigamonti, C. Manassero, M. Rusconi, M. Manassero, A. Pasini, Dalton Trans. 2009, 1206–1213.
- 11Deposition Number(s) 2087876 (for 1-CHCl3), 2087877 (for 2-(C6H6)2), and 2087878 (for 3-(CHCl3)2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 12
- 12aG. Parkin, Organometallics 2006, 25, 4744–4747;
- 12bA. Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859–871;
- 12cH. Kameo, H. Nakazawa, Chem. Asian J. 2013, 8, 1720–1734;
- 12dG. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2016, 45, 1065–1079;
- 12eJ. S. Jones, F. P. Gabbaï, Acc. Chem. Res. 2016, 49, 857–867;
- 12fB. R. Barnett, J. S. Figueroa, Chem. Commun. 2016, 52, 13829–13839;
- 12gD. You, F. P. Gabbaï, Trends Chem. 2019, 1, 485–496;
- 12hJ. Takaya, Chem. Sci. 2021, 12, 1964–1981.
- 13H. Kameo, T. Kawamoto, D. Bourissou, S. Sakaki, H. Nakazawa, Organometallics 2015, 34, 1440–1448.
- 14R. Herrmann, P. Wittwer, T. Braun, Eur. J. Inorg. Chem. 2016, 4898–4905.
- 15
- 15aL. Álvarez-Rodríguez, J. Brugos, J. A. Cabeza, P. García-Álvarez, E. Pérez-Carreño, Chem. Eur. J. 2017, 23, 15107–15115;
- 15bJ. A. Cabeza, I. Fernández, J. M. Fernández-Colinas, P. García-Álvarez, C. J. Laglera-Gándara, Chem. Eur. J. 2019, 25, 12423–12430.
- 16
- 16aC. Zhu, J. Takaya, N. Iwasawa, Org. Lett. 2015, 17, 1814–1817;
- 16bJ. Takaya, K. Miyama, C. Zhu, N. Iwasawa, Chem. Commun. 2017, 53, 3982–3985.
- 17K. Li, D. Xue, J. Phys. Chem. A 2006, 110, 11332–11337.
- 18H. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2014, 136, 10866–10869.
- 19B. J. Graziano, M. V. Vollmer, C. C. Lu, Angew. Chem. Int. Ed. 2021, 60, 15087–15094; Angew. Chem. 2021, 133, 15214–15221.
- 20
- 20aH. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem. 2004, 76, 2105–2146;
- 20bC. G. Hatchard, C. A. Parker, Proc. R. Soc. London Ser. A 1956, 235, 518–536;
- 20cC. A. Parker, Proc. R. Soc. London Ser. A 1953, 220, 104–116.
- 21T.-P. Lin, F. P. Gabbaï, J. Am. Chem. Soc. 2012, 134, 12230–12238.
- 22
- 22aM.-L. Tsao, C. M. Hadad, M. S. Platz, J. Am. Chem. Soc. 2003, 125, 8390–8399;
- 22bF. Wu, T. Shindo, S. Sawamura, T. Sumiyoshi, Bull. Chem. Soc. Jpn. 1997, 70, 1839–1842;
- 22cT. Sumiyoshi, Radiat. Phys. Chem. 1997, 50, 449–455;
- 22dS. Förgeteg, T. Bérces, J. Photochem. Photobiol. A 1993, 73, 187–195;
- 22eR. E. Bühler, M. Ebert, Nature 1967, 214, 1220–1221;
- 22fR. L. Strong, S. J. Rand, J. A. Britt, J. Am. Chem. Soc. 1960, 82, 5053–5057.
- 23
- 23aS. J. Hwang, D. C. Powers, A. G. Maher, B. L. Anderson, R. G. Hadt, S. L. Zheng, Y. S. Chen, D. G. Nocera, J. Am. Chem. Soc. 2015, 137, 6472–6475;
- 23bS. J. Hwang, B. L. Anderson, D. C. Powers, A. G. Maher, R. G. Hadt, D. G. Nocera, Organometallics 2015, 34, 4766–4774;
- 23cD. Gygi, M. I. Gonzalez, S. J. Hwang, K. T. Xia, Y. Qin, E. J. Johnson, F. Gygi, Y.-S. Chen, D. G. Nocera, J. Am. Chem. Soc. 2021, 143, 6060–6064.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.