Photocatalyst for High-Performance H2 Production: Ga-Doped Polymeric Carbon Nitride
Wenshuai Jiang
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorYajie Zhao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Department, Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China
Search for more papers by this authorDr. Xupeng Zong
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorHaodong Nie
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Department, Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China
Search for more papers by this authorLijuan Niu
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorProf. Li An
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dan Qu
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorProf. Xiayan Wang
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhui Kang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Department, Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078 Macau SAR, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zaicheng Sun
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorWenshuai Jiang
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorYajie Zhao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Department, Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China
Search for more papers by this authorDr. Xupeng Zong
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorHaodong Nie
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Department, Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China
Search for more papers by this authorLijuan Niu
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorProf. Li An
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dan Qu
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorProf. Xiayan Wang
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhui Kang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Department, Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078 Macau SAR, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zaicheng Sun
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124 P. R. China
Search for more papers by this authorAbstract
A photocatalyst system is generally comprises a catalyst and cocatalyst to achieve light absorption, electron-hole separation, and surface reaction. It is a challenge to develop a single photocatalyst having all functions so as to lower the efficiency loss. Herein, the active GaN4 site is integrated into a polymeric carbon nitride (CN) photocatalyst (GCN), which displays an excellent H2 production rate of 9904 μmol h−1 g−1. It is 162 and 3.3 times higher than that of CN with the absence (61 μmol h−1 g−1) and presence (2981 μmol h−1 g−1), respectively, of 1.0 wt % Pt. Under light irradiation the electron is injected and stored at the GaN4 site, where the LUMO locates. The HOMO distributes on the aromatic ring resulting in spatial charge separation. Transient photovoltage discloses the electron-storage capability of GCN. The negative GaN4 promotes proton adsorption in the excited state. The positive adsorption energy drives H2 desorption from GaN4 after passing the electron to the proton. This work opens up opportunities for exploring a novel catalyst for H2 production.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202015779-sup-0001-misc_information.pdf877.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 2018, 8, 1701503;
- 1bJ. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 2017, 391, 72–123;
- 1cW.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai, Chem. Rev. 2016, 116, 7159–7329;
- 1dA. Mishra, A. Mehta, S. Basu, N. P. Shetti, K. R. Reddy, T. M. Aminabhavi, Carbon 2019, 149, 693–721;
- 1eS. Cao, J. Yu, J. Phys. Chem. Lett. 2014, 5, 2101–2107;
- 1fV. W.-h. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, B. V. Lotsch, Nat. Commun. 2016, 7, 12165;
- 1gF. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. Wang, M. J. Bojdys, Nat. Rev. Mater. 2017, 2, 17030.
- 2
- 2aY. J. Sa, S. O. Park, G. Y. Jung, T. J. Shin, H. Y. Jeong, S. K. Kwak, S. H. Joo, ACS Catal. 2019, 9, 83–97;
- 2bL. Wang, D. C. Tranca, J. Zhang, Y. Qi, S. Sfaelou, T. Zhang, R. Dong, X. Zhuang, Z. Zheng, G. Seifert, Small 2017, 13, 1700783.
- 3
- 3aN. Zhang, T. Zhou, M. Chen, H. Feng, R. Yuan, C. a. Zhong, W. Yan, Y. Tian, X. Wu, W. Chu, C. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 111–118;
- 3bC. Ye, J.-X. Li, Z.-J. Li, X.-B. Li, X.-B. Fan, L.-P. Zhang, B. Chen, C.-H. Tung, L.-Z. Wu, ACS Catal. 2015, 5, 6973–6979.
- 4
- 4aJ. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small 2017, 13, 1603938;
- 4bH. Shi, G. Chen, C. Zhang, Z. Zou, ACS Catal. 2014, 4, 3637–3643.
- 5
- 5aC. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc. 2018, 140, 14161–14168;
- 5bG. Dong, W. Ho, C. Wang, J. Mater. Chem. A 2015, 3, 23435–23441.
- 6
- 6aY. Zhang, B. Xia, J. Ran, K. Davey, S. Z. Qiao, Adv. Energy Mater. 2020, 10, 1903879;
- 6bJ. Núñez, F. Fresno, A. E. Platero-Prats, P. Jana, J. L. G. Fierro, J. M. Coronado, D. P. Serrano, V. A. de la Peña O'Shea, ACS Appl. Mater. Interfaces 2016, 8, 23729–23738;
- 6cY. Yamazaki, H. Takeda, O. Ishitani, J. Photochem. Photobiol. C 2015, 25, 106–137;
- 6dR. Kuriki, K. Maeda, Phys. Chem. Chem. Phys. 2017, 19, 4938–4950;
- 6eR. Kuriki, O. Ishitani, K. Maeda, ACS Appl. Mater. Interfaces 2016, 8, 6011–6018;
- 6fL. Wang, W. Zhang, S. Wang, Z. Gao, Z. Luo, X. Wang, R. Zeng, A. Li, H. Li, M. Wang, X. Zheng, J. Zhu, W. Zhang, C. Ma, R. Si, J. Zeng, Nat. Commun. 2016, 7, 14036.
- 7
- 7aK. Chang, X. Hai, J. Ye, Adv. Energy Mater. 2016, 6, 1502555;
- 7bX. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427–2431.
- 8
- 8aG. Yanalak, A. Aljabour, E. Aslan, F. Ozel, I. H. Patir, Int. J. Hydrogen Energy 2018, 43, 17185–17194;
- 8bS. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen, X. Li, Appl. Catal. B 2018, 227, 218–228;
- 8cX. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 2008, 130, 7176–7177;
- 8dS. Hua, D. Qu, L. An, W. Jiang, Y. Wen, X. Wang, Z. Sun, Appl. Catal. B 2019, 240, 253–261;
- 8eY.-J. Yuan, Z.-K. Shen, S. Song, J. Guan, L. Bao, L. Pei, Y. Su, S. Wu, W. Bai, Z.-T. Yu, Z. Ji, Z. Zou, ACS Catal. 2019, 9, 7801–7807;
- 8fZ. Sun, H. Zheng, J. Li, P. Du, Energy Environ. Sci. 2015, 8, 2668–2676;
- 8gD. Li, J. Shi, C. Li, Small 2018, 14, 1704179.
- 9
- 9aS. An, G. Zhang, T. Wang, W. Zhang, K. Li, C. Song, J. T. Miller, S. Miao, J. Wang, X. Guo, ACS Nano 2018, 12, 9441–9450;
- 9bC. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Adv. Funct. Mater. 2017, 27, 1604328;
- 9cY. Cao, D. Wang, Y. Lin, W. Liu, L. Cao, X. Liu, W. Zhang, X. Mou, S. Fang, X. Shen, T. Yao, ACS Appl. Energy Mater. 2018, 1, 6082–6088;
- 9dS. Cao, H. Li, T. Tong, H.-C. Chen, A. Yu, J. Yu, H. M. Chen, Adv. Funct. Mater. 2018, 28, 1802169;
- 9eP. Deng, J. Xiong, S. Lei, W. Wang, X. Ou, Y. Xu, Y. Xiao, B. Cheng, J. Mater. Chem. A 2019, 7, 22385–22397;
- 9fT. Tong, B. He, B. Zhu, B. Cheng, L. Zhang, Appl. Surf. Sci. 2018, 459, 385–392;
- 9gS. Hu, X. Qu, J. Bai, P. Li, Q. Li, F. Wang, L. Song, ACS Sustainable Chem. Eng. 2017, 5, 6863–6872.
- 10N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, J. Am. Chem. Soc. 2013, 135, 15443–15449.
- 11Y. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao, Angew. Chem. Int. Ed. 2017, 56, 12191–12196; Angew. Chem. 2017, 129, 12359–12364.
- 12X. Yu, X. An, A. Shavel, M. Ibáñez, A. Cabot, J. Mater. Chem. A 2014, 2, 12317–12322.
- 13
- 13aY. He, S. Hwang, D. A. Cullen, M. A. Uddin, L. Langhorst, B. Li, S. Karakalos, A. J. Kropf, E. C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K. L. More, G. Wang, S. Litster, G. Wu, Energy Environ. Sci. 2019, 12, 250–260;
- 13bG. Wu, C. M. Johnston, N. H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J. S. Lezama-Pacheco, S. D. Conradson, K. L. More, D. J. Myers, P. Zelenay, J. Mater. Chem. 2011, 21, 11392–11405.
- 14
- 14aY. C. Pan, S. F. Wang, W. H. Lee, M. C. Lee, W. K. Chen, W. H. Chen, L. Y. Jang, J. F. Lee, C. I. Chiang, H. Chang, K. T. Wu, D. S. Lin, Appl. Phys. Lett. 2001, 78, 31–33;
- 14bJ. W. Chiou, S. Mookerjee, K. V. R. Rao, J. C. Jan, H. M. Tsai, K. Asokan, W. F. Pong, F. Z. Chien, M. H. Tsai, Y. K. Chang, Y. Y. Chen, J. F. Lee, C. C. Lee, G. C. Chi, Appl. Phys. Lett. 2002, 81, 3389–3391;
- 14cJ. W. Chiou, J. C. Jan, H. M. Tsai, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, C. W. Hsu, H. M. Lin, C. C. Chen, C. H. Shen, L. C. Chen, K. H. Chen, Appl. Phys. Lett. 2003, 82, 3949–3951.
- 15
- 15aL. Liang, F. Lei, S. Gao, Y. Sun, X. Jiao, J. Wu, S. Qamar, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 13971–13974; Angew. Chem. 2015, 127, 14177–14180;
- 15bS. Sun, W. Wang, D. Jiang, L. Zhang, X. Li, Y. Zheng, Q. An, Nano Res. 2014, 7, 1497–1506.
- 16Q. Zuo, T. Liu, C. Chen, Y. Ji, X. Gong, Y. Mai, Y. Zhou, Angew. Chem. Int. Ed. 2019, 58, 10198–10203; Angew. Chem. 2019, 131, 10304–10309.
- 17Y. Pan, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 2015, 3, 13087–13094.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.