Self-Resistance in the Biosynthesis of Fungal Macrolides Involving Cycles of Extracellular Oxidative Activation and Intracellular Reductive Inactivation
Dr. Yalong Zhang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorDr. Jian Bai
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorDr. Le Zhang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorChen Zhang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorBingyu Liu
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Youcai Hu
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorDr. Yalong Zhang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorDr. Jian Bai
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorDr. Le Zhang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorChen Zhang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorBingyu Liu
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Youcai Hu
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 P. R. China
Search for more papers by this authorAbstract
Self-resistance genes are employed by many microbial producers of bioactive natural products to avoid self-harm. Herein, we describe a unique strategy for self-resistance toward a macrolide antibiotic, A26771B (1), identified by elucidating its biosynthetic pathway in the fungus Penicillium egyptiacum. A highly reducing polyketide synthase and a trans-acting thioesterase generate the macrolide backbone, and a cytochrome P450 and an acyltransferase, respectively catalyze hydroxylation and succinylation to form the prodrug berkeleylactone E (2). Then, extracellular oxidative activation by a secreted flavin-dependent oxidase forms 1, while intracellular reductive inactivation by a short-chain reductase reforms 2, forming a redox cycle. Our work illustrates a unique redox-mediated resistance mechanism for fungal antibiotics and contributes to the understanding of antibiotic biosynthesis and resistance.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202015442-sup-0001-misc_information.pdf4.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. D. Wright, Nat. Rev. Microbiol. 2007, 5, 175–186.
- 2P. Beyer, V. Moorthy, S. Paulin, S. R. Hill, M. Sprenger, S. Garner, M. Simao, R. Guerra, N. Magrini, S. Swaminathan, Lancet 2018, 392, 264–266.
- 3T. A. Wencewicz, J. Mol. Biol. 2019, 431, 3370–3399.
- 4
- 4aS. Mak, Y. Xu, J. R. Nodwell, Mol. Microbiol. 2014, 93, 391–402;
- 4bN. P. Keller, Nat. Chem. Biol. 2015, 11, 671–677;
- 4cY. Yan, N. Liu, Y. Tang, Nat. Prod. Rep. 2020, 37, 879–892.
- 5K. H. Almabruk, L. K. Dinh, B. Philmus, ACS Chem. Biol. 2018, 13, 1426–1437.
- 6E. Cundliffe, A. L. Demain, J. Ind. Microbiol. Biotechnol. 2010, 37, 643–672.
- 7
- 7aK. H. Michel, P. V. Demarco, R. Nagarajan, J. Antibiot. 1977, 30, 571–575;
- 7bA. A. Stierle, D. B. Stierle, D. Decato, N. D. Priestley, J. B. Alverson, J. Hoody, K. McGrath, D. Klepacki, J. Nat. Prod. 2017, 80, 1150–1160.
- 8
- 8aS. Canova, R. Lepine, A. Thys, A. Baron, D. Roche, Bioorg. Med. Chem. Lett. 2011, 21, 4768–4772;
- 8bG. Lang, M. I. Mitova, G. Ellis, S. Van der Sar, R. K. Phipps, J. W. Blunt, N. J. Cummings, A. L. J. Cole, M. H. G. Munro, J. Nat. Prod. 2006, 69, 621–624;
- 8cD. Rodphaya, J. Sekiguchi, Y. Yamada, J. Antibiot. 1986, 39, 629–635.
- 9F. Xiao, S. Dong, Y. Liu, Y. Feng, H. Li, C.-H. Yun, Q. Cui, W. Li, J. Am. Chem. Soc. 2020, 142, 16031–16038.
- 10K. Arai, B. J. Rawlings, Y. Yoshizawa, J. C. Vederas, J. Am. Chem. Soc. 1989, 111, 3391–3399.
- 11Y. H. Chooi, Y. Tang, J. Org. Chem. 2012, 77, 9933–9953.
- 12Y. Morishita, H. P. Zhang, T. Taniguchi, K. Mori, T. Asai, Org. Lett. 2019, 21, 4788–4792.
- 13A. O. Zabala, Y. H. Chooi, M. S. Choi, H. C. Lin, Y. Tang, ACS Chem. Biol. 2014, 9, 1576–1586.
- 14
- 14aQ. B. Chen, J. Gao, C. Jamieson, J. W. Liu, M. Ohashi, J. Bai, D. J. Yan, B. Y. Liu, Y. S. Che, Y. A. Wang, K. N. Houk, Y. C. Hu, J. Am. Chem. Soc. 2019, 141, 14052–14056;
- 14bD. A. Yee, T. B. Kakule, W. Cheng, M. B. Chen, C. T. Y. Chong, Y. Hai, L. F. Hang, Y. S. Hung, N. Liu, M. Ohashi, I. C. Okorafor, Y. X. Song, M. C. Tang, Z. Zhang, Y. Tang, J. Am. Chem. Soc. 2020, 142, 710–714.
- 15H. J. Bestmann, W. Kellermann, Synthesis 1994, 1257–1261.
- 16A. Stierle, D. Stierle, N. Priestley (the University of Montana), WO 2018/175418 A1, 2018.
- 17H. C. Lin, Y. Tsunematsu, S. Dhingra, W. Xu, M. Fukutomi, Y. H. Chooi, D. E. Cane, A. M. Calvo, K. Watanabe, Y. Tang, J. Am. Chem. Soc. 2014, 136, 4426–4436.
- 18J. M. Zhang, H. H. Wang, X. Liu, C. H. Hu, Y. Zou, J. Am. Chem. Soc. 2020, 142, 1957–1965.
- 19
- 19aT. Itoh, K. Tokunaga, Y. Matsuda, I. Fujii, I. Abe, Y. Ebizuka, T. Kushiro, Nat. Chem. 2010, 2, 858–864;
- 19bY. Matsuda, T. Wakimoto, T. Mori, T. Awakawa, I. Abe, J. Am. Chem. Soc. 2014, 136, 15326–15336;
- 19cX. M. Mao, Z. J. Zhan, M. N. Grayson, M. C. Tang, W. Xu, Y. Q. Li, W. B. Yin, H. C. Lin, Y. H. Chooi, K. N. Houk, Y. Tang, J. Am. Chem. Soc. 2015, 137, 11904–11907.
- 20J. L. Cereghino, J. M. Cregg, FEMS Microbiol. Rev. 2000, 24, 45–66.
- 21N. G. H. Leferink, D. Heuts, M. W. Fraaije, W. J. H. van Berkel, Arch. Biochem. Biophys. 2008, 474, 292–301.
- 22
- 22aY. Zhang, W. H. Wen, J. Y. Pu, M. C. Tang, L. W. Zhang, C. Peng, Y. Q. Xu, G. L. Tang, Proc. Natl. Acad. Sci. USA 2018, 115, 11232–11237;
- 22bM. Šmehilová, P. Galuszka, K. D. Bilyeu, P. Jaworek, M. Kowalska, M. Šebela, M. Sedlářová, J. T. English, I. Frébort, J. Exp. Bot. 2009, 60, 2701–2712;
- 22cS. Sirikantaramas, F. Taura, Y. Tanaka, Y. Ishikawa, S. Morimoto, Y. Shoyama, Plant Cell Physiol. 2005, 46, 1578–1582.
- 23P. Horton, K. J. Park, T. Obayashi, N. Fujita, H. Harada, C. J. Adams-Collier, K. Nakai, Nucleic Acids Res. 2007, 35, W585–W587.
- 24W. Zhang, L. Du, Z. P. Qu, X. W. Zhang, F. W. Li, Z. Li, F. F. Qi, X. Wang, Y. Y. Jiang, P. Men, J. R. Sun, S. N. Cao, C. Geng, F. X. Qi, X. B. Wan, C. N. Liu, S. Y. Li, Proc. Natl. Acad. Sci. USA 2019, 116, 13305–13310.
- 25F. Y. Lim, B. Ames, C. T. Walsh, N. P. Keller, Cell. Microbiol. 2014, 16, 1267–1283.
- 26W. Mattheus, L. J. Gao, P. Herdewijn, B. Landuyt, J. Verhaegen, J. Masschelein, G. Volckaert, R. Lavigne, Chem. Biol. 2010, 17, 149–159.
- 27T. A. Wencewicz, C. T. Walsh, Biochemistry 2012, 51, 7712–7725.
- 28
- 28aR. Cella, L. C. Vining, Can. J. Microbiol. 1975, 21, 463–472;
- 28bL. M. Quiros, I. Aguirrezabalaga, C. Olano, C. Mendez, J. A. Salas, Mol. Microbiol. 1998, 28, 1177–1185.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.