Glucose Binding Drives Reconfiguration of a Dynamic Library of Urea-Containing Metal–Organic Assemblies
Dr. Dong Yang
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorDr. Larissa K. S. von Krbek
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Present address: Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
Search for more papers by this authorProf. Le Yu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorDr. Tanya K. Ronson
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorProf. John D. Thoburn
Department of Chemistry, Randolph-Macon College, Ashland, VA, 23005 USA
Search for more papers by this authorDr. John P. Carpenter
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorDr. Jake L. Greenfield
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorDuncan J. Howe
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorProf. Biao Wu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorCorresponding Author
Prof. Jonathan R. Nitschke
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorDr. Dong Yang
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorDr. Larissa K. S. von Krbek
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Present address: Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
Search for more papers by this authorProf. Le Yu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorDr. Tanya K. Ronson
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorProf. John D. Thoburn
Department of Chemistry, Randolph-Macon College, Ashland, VA, 23005 USA
Search for more papers by this authorDr. John P. Carpenter
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorDr. Jake L. Greenfield
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorDuncan J. Howe
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorProf. Biao Wu
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 China
Search for more papers by this authorCorresponding Author
Prof. Jonathan R. Nitschke
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
Search for more papers by this authorAbstract
A bis-urea-functionalized ditopic subcomponent assembled with 2-formylpyridine and FeII, resulting in a dynamic library of metal–organic assemblies: an irregular FeII4L6 structure and three FeII2L3 stereoisomers: left- and right-handed helicates and a meso-structure. This library reconfigured in response to the addition of monosaccharide derivatives, which served as guests for specific library members, and the rate of saccharide mutarotation was also enhanced by the library. The (P) enantiomer of the FeII2L3 helical structure bound β-D-glucose selectively over α-D-glucose. As a consequence, the library collapsed into the (P)-FeII2L3 helicate following glucose addition. The α-D-glucose was likewise transformed into the β-D-anomer during equilibration and binding. Thus, β-D-glucose and (P)-3 amplified each other in the product mixture, as metal–organic and saccharide libraries geared together into a single equilibrating system.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014568-sup-0001-misc_information.pdf11.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418–3438; Angew. Chem. 2009, 121, 3470–3490;
- 1bS. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44, 419–432;
- 1cC. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012–3035;
- 1dQ. Zhang, K. Tiefenbacher, Nat. Chem. 2015, 7, 197–202;
- 1eS. H. A. M. Leenders, R. Gramage-Doria, B. de Bruin, J. N. H. Reek, Chem. Soc. Rev. 2015, 44, 433–448.
- 2
- 2aT. Hasell, A. I. Cooper, Nat. Rev. Mater. 2016, 1, 16053;
- 2bK. Jie, Y. Zhou, E. Li, F. Huang, Acc. Chem. Res. 2018, 51, 2064–2072;
- 2cP. Howlader, E. Zangrando, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 9070–9078;
- 2dM. Yamashina, Y. Tanaka, R. Lavendomme, T. K. Ronson, M. Pittelkow, J. R. Nitschke, Nature 2019, 574, 511–515;
- 2eS. Akine, M. Miyashita, T. Nabeshima, J. Am. Chem. Soc. 2017, 139, 4631–4634;
- 2fO. Shyshov, R.-C. Brachvogel, T. Bachmann, R. Srikantharajah, D. Segets, F. Hampel, R. Puchta, M. von Delius, Angew. Chem. Int. Ed. 2017, 56, 776–781; Angew. Chem. 2017, 129, 794–799.
- 3
- 3aM. J. Webber, R. Langer, Chem. Soc. Rev. 2017, 46, 6600–6620;
- 3bX. Ma, Y. Zhao, Chem. Rev. 2015, 115, 7794–7839.
- 4
- 4aG. Zhang, M. Mastalerz, Chem. Soc. Rev. 2014, 43, 1934–1947;
- 4bI. A. Riddell, M. M. J. Smulders, J. K. Clegg, J. R. Nitschke, Chem. Commun. 2011, 47, 457–459;
- 4cD. Yang, J. Zhao, Y. Zhao, Y. Lei, L. Cao, X.-J. Yang, M. Davi, N. de Sousa Amadeu, C. Janiak, Z. Zhang, Y.-Y. Wang, B. Wu, Angew. Chem. Int. Ed. 2015, 54, 8658–8661; Angew. Chem. 2015, 127, 8782–8785;
- 4dD. Yang, J. Zhao, L. Yu, X. Lin, W. Zhang, H. Ma, A. Gogoll, Z. Zhang, Y. Wang, X.-J. Yang, B. Wu, J. Am. Chem. Soc. 2017, 139, 5946–5951.
- 5D. M. Rudkevich in Functional Synthetic Receptors (Eds.: T. Schrader, A. D. Hamilton), Wiley-VCH, Weinheim, 2005, pp. 257–298.
- 6
- 6aR. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810–6918;
- 6bS. J. Dalgarno, N. P. Power, J. L. Atwood, Coord. Chem. Rev. 2008, 252, 825–841;
- 6cN. Kishi, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 2014, 53, 3604–3607; Angew. Chem. 2014, 126, 3678–3681;
- 6dD. Zhang, T. K. Ronson, J. R. Nitschke, Acc. Chem. Res. 2018, 51, 2423–2436;
- 6eQ. Shi, X. Zhou, W. Yuan, X. Su, A. Neniškis, X. Wei, L. Taujenis, G. Snarskis, J. S. Ward, K. Rissanen, J. de Mendoza, E. Orentas, J. Am. Chem. Soc. 2020, 142, 3658–3670;
- 6fD. Zhang, T. K. Ronson, S. Güryel, J. D. Thoburn, D. J. Wales, J. R. Nitschke, J. Am. Chem. Soc. 2019, 141, 14534–14538;
- 6gX.-Z. Li, L.-P. Zhou, L.-L. Yan, D.-Q. Yuan, C.-S. Lin, Q.-F. Sun, J. Am. Chem. Soc. 2017, 139, 8237–8244;
- 6hM. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Coord. Chem. Rev. 2019, 378, 333–349;
- 6iC. Tan, D. Chu, X. Tang, Y. Liu, W. Xuan, Y. Cui, Chem. Eur. J. 2019, 25, 662–672;
- 6jW. Wang, Y.-X. Wang, H.-B. Yang, Chem. Soc. Rev. 2016, 45, 2656–2693;
- 6kG. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233–2243.
- 7
- 7aJ. W. Steed, Chem. Commun. 2011, 47, 1379–1383;
- 7bM.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. W. Steed, Chem. Rev. 2010, 110, 1960–2004;
- 7cJ. W. Steed, Chem. Soc. Rev. 2010, 39, 3686–3699.
- 8
- 8aB. Wu, F. Cui, Y. Lei, S. Li, N. de Sousa Amadeu, C. Janiak, Y.-J. Lin, L.-H. Weng, Y.-Y. Wang, X.-J. Yang, Angew. Chem. Int. Ed. 2013, 52, 5096–5100; Angew. Chem. 2013, 125, 5200–5204;
- 8bS. Li, C. Jia, B. Wu, Q. Luo, X. Huang, Z. Yang, Q.-S. Li, X.-J. Yang, Angew. Chem. Int. Ed. 2011, 50, 5721–5724; Angew. Chem. 2011, 123, 5839–5842;
- 8cJ. Zhao, D. Yang, X.-J. Yang, B. Wu, Coord. Chem. Rev. 2019, 378, 415–444;
- 8dD. Yang, J. Zhao, X.-J. Yang, B. Wu, Org. Chem. Front. 2018, 5, 662–690.
- 9G. Markiewicz, A. Jenczak, M. Kołodziejski, J. J. Holstein, J. K. M. Sanders, A. R. Stefankiewicz, Nat. Commun. 2017, 8, 15109.
- 10Y. Liu, W. Zhao, C.-H. Chen, A. H. Flood, Science 2019, 365, 159–161.
- 11
- 11aR. A. Tromans, T. S. Carter, L. Chabanne, M. P. Crump, H. Li, J. V. Matlock, M. G. Orchard, A. P. Davis, Nat. Chem. 2019, 11, 52–56;
- 11bY. Ferrand, M. P. Crump, A. P. Davis, Science 2007, 318, 619–622;
- 11cA. P. Davis, Chem. Soc. Rev. 2020, 49, 2531–2545.
- 12Q.-Q. Wang, V. W. Day, K. Bowman-James, J. Am. Chem. Soc. 2013, 135, 392–399.
- 13D. Zhang, T. K. Ronson, J. Mosquera, A. Martinez, L. Guy, J. R. Nitschke, J. Am. Chem. Soc. 2017, 139, 6574–6577.
- 14R. Custelcean, P. V. Bonnesen, N. C. Duncan, X. Zhang, L. A. Watson, G. Van Berkel, W. B. Parson, B. P. Hay, J. Am. Chem. Soc. 2012, 134, 8525–8534.
- 15S. Yi, V. Brega, B. Captain, A. E. Kaifer, Chem. Commun. 2012, 48, 10295–10297.
- 16L.-P. Zhou, Q.-F. Sun, Chem. Commun. 2015, 51, 16767–16770.
- 17K. Suzuki, M. Kawano, S. Sato, M. Fujita, J. Am. Chem. Soc. 2007, 129, 10652–10653.
- 18Q.-Q. Wang, S. Gonell, S. H. A. M. Leenders, M. Düerr, I. Ivanović-Burmazović, J. N. H. Reek, Nat. Chem. 2016, 8, 225–230.
- 19
- 19aG. Men, J.-M. Lehn, Chem. Sci. 2019, 10, 90–98;
- 19bJ.-M. Lehn, Chem. Soc. Rev. 2007, 36, 151–160;
- 19cM. Kołodziejski, A. R. Stefankiewicz, J.-M. Lehn, Chem. Sci. 2019, 10, 1836–1843;
- 19dJ. M. Lehn, A. V. Eliseev, Science 2001, 291, 2331–2332;
- 19eP. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652–3711;
- 19fF. B. L. Cougnon, J. K. M. Sanders, Acc. Chem. Res. 2012, 45, 2211–2221;
- 19gJ. Li, P. Nowak, S. Otto, J. Am. Chem. Soc. 2013, 135, 9222–9239;
- 19hM.-K. Chung, P. S. White, S. J. Lee, M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 8683–8686; Angew. Chem. 2009, 121, 8839–8842;
- 19iS. M. Voshell, S. J. Lee, M. R. Gagné, J. Am. Chem. Soc. 2006, 128, 12422–12423;
- 19jB. C. Peacor, C. M. Ramsay, M. L. Waters, Chem. Sci. 2017, 8, 1422–1428;
- 19kJ. F. Reuther, S. D. Dahlhauser, E. V. Anslyn, Angew. Chem. Int. Ed. 2019, 58, 74–85; Angew. Chem. 2019, 131, 76–88;
- 19lJ. F. Reuther, A. C. Goodrich, P. R. Escamilla, T. A. Lu, V. Del Rio, B. W. Davies, E. V. Anslyn, J. Am. Chem. Soc. 2018, 140, 3768–3774;
- 19mA. G. Mullins, N. K. Pinkin, J. A. Hardin, M. L. Waters, Angew. Chem. Int. Ed. 2019, 58, 5282–5285; Angew. Chem. 2019, 131, 5336–5339;
- 19nL. I. James, J. E. Beaver, N. W. Rice, M. L. Waters, J. Am. Chem. Soc. 2013, 135, 6450–6455.
- 20The metal centers of dinuclear M2L3 complexes may exhibit three combinations of stereochemical configurations (ΔΔ, ΛΛ,) and (ΔΛ) which result in two possible M2L3 isomers incorporating achiral ligand A: an achiral mesocate 2 (ΔΛ), and the enantiomers of chiral helicate 3 (ΔΔ or ΛΛ). See
- 20aC. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997, 97, 2005–2062;
- 20bU. Knof, A. von Zelewsky, Angew. Chem. Int. Ed. 1999, 38, 302–322;
10.1002/(SICI)1521-3773(19990201)38:3<302::AID-ANIE302>3.0.CO;2-G CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 312–333;
- 20cJ. Xu, T. N. Parac, K. N. Raymond, Angew. Chem. Int. Ed. 1999, 38, 2878–2882;
10.1002/(SICI)1521-3773(19991004)38:19<2878::AID-ANIE2878>3.0.CO;2-W CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 3055–3058.10.1002/(SICI)1521-3757(19991004)111:19<3055::AID-ANGE3055>3.0.CO;2-K Web of Science® Google Scholar
- 21Deposition Number 2024202 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 22
- 22aP. Thordarson, Chem. Soc. Rev. 2011, 40, 1305–1323;
- 22bD. Brynn Hibbert, P. Thordarson, Chem. Commun. 2016, 52, 12792–12805.
- 23
- 23aS. E. Howson, L. E. N. Allan, N. P. Chmel, G. J. Clarkson, R. van Gorkum, P. Scott, Chem. Commun. 2009, 1727–1729;
- 23bJ. L. Bolliger, A. M. Belenguer, J. R. Nitschke, Angew. Chem. Int. Ed. 2013, 52, 7958–7962; Angew. Chem. 2013, 125, 8116–8120.
- 24W. Zuo, Z. Huang, Y. Zhao, W. Xu, Z. Liu, X.-J. Yang, C. Jia, B. Wu, Chem. Commun. 2018, 54, 7378–7381.
- 25S. A. Mulhern, P. H. Fishman, J. W. Kusiak, J. M. Bailey, J. Biol. Chem. 1973, 248, 4163–4173.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.