Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species
Dr. Won Jun Jang
Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419 Korea
Search for more papers by this authorJeongkyu Woo
Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419 Korea
Search for more papers by this authorCorresponding Author
Prof. Jaesook Yun
Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419 Korea
Search for more papers by this authorDr. Won Jun Jang
Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419 Korea
Search for more papers by this authorJeongkyu Woo
Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419 Korea
Search for more papers by this authorCorresponding Author
Prof. Jaesook Yun
Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419 Korea
Search for more papers by this authorAbstract
We report the diastereo- and enantioselective conjugate addition of chiral secondary borylalkyl copper species derived from borylalkenes in situ to α,β-unsaturated diesters. In the presence of a chiral bisphosphine-ligated CuH catalyst, the conjugate addition provides a direct access to enantioenriched alkylboron compounds containing two contiguous carbon stereogenic centers in good yield with high diastereo- and enantioselectivity (up to >98:2 dr, >99:1 er) by assembling readily available starting alkenyl reagents in a single operation without using preformed organometallic reagents or chiral auxiliaries. The resulting products were used in various organic transformations. The utility of the synthetic approach was highlighted by the synthesis of (−)-phaseolinic acid.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014425-sup-0001-misc_information.pdf4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see:
- 1aA. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 2008, 108, 2796–2823;
- 1bS. R. Harutyunyan, T. D. Hartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008, 108, 2824–2852;
- 1cT. Jerphagnon, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, Chem. Soc. Rev. 2009, 38, 1039–1075;
- 1dA. Cordova, Catalytic Asymmetric Conjugate Reactions, Wiley-VCH, Weinheim, 2010;
10.1002/9783527630578 Google Scholar
- 1eK. Zheng, X. Liu, X. Feng, Chem. Rev. 2018, 118, 7586–7656.
- 2For selected examples, see:
- 2aD. Martin, S. Kehrli, M. d'Augustin, H. Clavier, M. Mauduit, A. Alexakis, J. Am. Chem. Soc. 2006, 128, 8416–8417;
- 2bS.-Y. Wang, S.-J. Ji, T.-P. Loh, J. Am. Chem. Soc. 2007, 129, 276–277;
- 2cJ. C. H. Lee, D. G. Hall, J. Am. Chem. Soc. 2010, 132, 5544–5545;
- 2dR. Jumde, P. F. Lanza, M. J. Veenstra, M. S. R. Harutyunyan, Science 2016, 352, 433–437;
- 2eX. Yan, S. R. Harutyunyan, Nat. Commun. 2019, 10, 3402.
- 3For selected examples, see:
- 3aA. W. Hird, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 14988–14989;
- 3bK. Endo, M. Ogawa, T. Shibata, Angew. Chem. Int. Ed. 2010, 49, 2410–2413; Angew. Chem. 2010, 122, 2460–2463;
- 3cK. Endo, D. Hamada, S. Yakeishi, M. Ogawa, T. Shibata, Org. Lett. 2012, 14, 2342–2345;
- 3dS. Drissi-Amraoui, M. S. T. Morin, C. Crévisy, O. Baslé, R. M. de Figueiredo, M. Mauduit, J.-M. Campagne, Angew. Chem. Int. Ed. 2015, 54, 11830–11834; Angew. Chem. 2015, 127, 11996–12000.
- 4For selected examples, see:
- 4aM. d'Augustin, L. Palais, A. Alexakis, Angew. Chem. Int. Ed. 2005, 44, 1376–1378; Angew. Chem. 2005, 117, 1400–1402;
- 4bT. L. May, J. A. Dabrowski, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 736–739;
- 4cD. Müller, M. Tissot, A. Alexakis, Org. Lett. 2012, 14, 2342–2345;
- 4dS. Goncalves-Contal, L. Gremaud, A. Alexakis, Angew. Chem. Int. Ed. 2013, 52, 12701; Angew. Chem. 2013, 125, 12933.
- 5For selected examples, see:
- 5aK. C. Nicolaou, W. Tang, P. Dagneau, R. Faraoni, Angew. Chem. Int. Ed. 2005, 44, 3874–3879; Angew. Chem. 2005, 117, 3942–3947;
- 5bR. M. Maksymowicz, P. M. C. Roth, S. P. Fletcher, Nat. Chem. 2012, 4, 649–654;
- 5cM. Sidera, P. M. C. Roth, R. M. Maksymowicz, S. P. Fletcher, Angew. Chem. Int. Ed. 2013, 52, 7995–7999; Angew. Chem. 2013, 125, 8153–8157;
- 5dZ. Gao, S. P. Fletcher, Chem. Sci. 2017, 8, 641–646.
- 6For selected examples, see:
- 6aY. Takaya, M. Ogasawara, T. Hayashi, M. Sakai, N. Miyaura, J. Am. Chem. Soc. 1998, 120, 5579–5580;
- 6bT. Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem. Soc. 2003, 125, 11508–11509;
- 6cK. Kikushima, J. C. Holder, M. Gatti, B. M. Stoltz, J. Am. Chem. Soc. 2011, 133, 6902–6905;
- 6dK. Takatsu, R. Shintani, T. Hayashi, Angew. Chem. Int. Ed. 2011, 50, 5548–5552; Angew. Chem. 2011, 123, 5662–5666;
- 6eM. Yoshida, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2012, 134, 11896–11899;
- 6fC. Wu, G. Yue, C. D.-T. Nielsen, K. Xu, H. Hirao, J. Zhou, J. Am. Chem. Soc. 2016, 138, 742–745;
- 6gQ. Chong, Z. Yue, S. Zhang, C. Ji, F. Cheng, H. Zhang, X. Hong, F. Meng, ACS Catal. 2017, 7, 5693–5698.
- 7
- 7aY. S. Park, G. A. Weisenburger, P. Beak, J. Am. Chem. Soc. 1997, 119, 10537–10538;
- 7bD. J. Pippel, G. A. Weisenburger, S. R. Wilson, P. Beak, Angew. Chem. Int. Ed. 1998, 37, 2522–2524;
10.1002/(SICI)1521-3773(19981002)37:18<2522::AID-ANIE2522>3.0.CO;2-T CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 2600–2602;10.1002/(SICI)1521-3757(19980918)110:18<2600::AID-ANGE2600>3.0.CO;2-V Web of Science® Google Scholar
- 7cM. D. Curtis, P. Beak, J. Org. Chem. 1999, 64, 2996–2997;
- 7dT. A. Johnson, M. D. Curtis, P. Beak, J. Am. Chem. Soc. 2001, 123, 1004–1005;
- 7eT. A. Johnson, D. O. Jang, B. W. Slafer, M. D. Curtis, P. Beak, J. Am. Chem. Soc. 2002, 124, 11689–11698;
- 7fS. J. Lee, P. Beak, J. Am. Chem. Soc. 2006, 128, 2178–2179.
- 8For selected examples, see:
- 8aD. H. Hua, R. Chan-Yu-King, J. A. McKie, L. Myer, J. Am. Chem. Soc. 1987, 109, 5026–5029;
- 8bS. Hanessian, A. Gomtsyan, A. Payne, Y. Hervé, S. Beaudoin, J. Org. Chem. 1993, 58, 5032–5034;
- 8cK. Tanaka, Y. Ohta, K. Fuji, J. Org. Chem. 1995, 60, 8036–8043;
- 8dS. Hanessian, A. Gomtsyan, N. Malek, J. Org. Chem. 2000, 65, 5623–5631.
- 9For reviews, see:
- 9aP. J. Parsons, C. S. Penkett, A. J. Shell, Chem. Rev. 1996, 96, 195–206;
- 9bJ. Zhou, Chem. Asian J. 2010, 5, 422–434;
- 9cH. Pellissier, Tetrahedron 2013, 69, 7171–7210;
- 9dX. Yang, S. J. Kalita, S. Maheshuni, Y.-Y. Huang, Coord. Chem. Rev. 2019, 392, 35–48.
- 10For reviews, see:
- 10aC. Deutsch, N. Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 2916–2927;
- 10bA. J. Jordan, G. Lalic, J. P. Sadighi, Chem. Rev. 2016, 116, 8318–8372;
- 10cH. Wang, S. L. Buchwald, Copper-Catalyzed Enantioselective Hydrofunctionalization of Alkenes (Eds.: S. E. Denmark), Wiley, Hoboken, 2019, pp. 121–205.
- 11For selected Examples, see:
- 11aD. Noh, H. Chea, J. Ju, J. Yun, Angew. Chem. Int. Ed. 2009, 48, 6062–6064; Angew. Chem. 2009, 121, 6178–6180;
- 11bD. Noh, S. K. Yoon, J. Won, J. Y. Lee, J. Yun, Chem. Asian J. 2011, 6, 1967–1969;
- 11cA. Saxena, B. Choi, H. W. Lam, J. Am. Chem. Soc. 2012, 134, 8428–8431;
- 11dY. Miki, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2013, 52, 10830–10834; Angew. Chem. 2013, 125, 11030–11034;
- 11eS. Zhu, N. Niljianskul, S. L. Buchwald, J. Am. Chem. Soc. 2013, 135, 15746–15749;
- 11fY. Yang, I. B. Perry, G. Lu, P. Liu, S. L. Buchwald, Science 2016, 353, 144–150;
- 11gY. Yang, I. B. Perry, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 9787–9790;
- 11hW. J. Jang, S. M. Song, J. H. Moon, J. Y. Lee, J. Yun, J. Am. Chem. Soc. 2017, 139, 13660–13663;
- 11iY. Ye, S.-T. Kim, J. Jeong, M.-H. Baik, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 3901–3909.
- 12
- 12aX. Feng, H. Jeon, J. Yun, Angew. Chem. Int. Ed. 2013, 52, 3989–3992; Angew. Chem. 2013, 125, 4081–4084;
- 12bJ. T. Han, W. J. Jang, N. Kim, J. Yun, J. Am. Chem. Soc. 2016, 138, 15146–15149;
- 12cW. J. Jang, J. T. Han, J. Yun, Synthesis 2017, 49, 4753–4758;
- 12dW. J. Jang, J. Yun, Angew. Chem. Int. Ed. 2018, 57, 12116–12120; Angew. Chem. 2018, 130, 12292–12296.
- 13
- 13aD. Nishikawa, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137, 15620–15623;
- 13bM. K. Armstrong, G. Lalic, J. Am. Chem. Soc. 2019, 141, 6173–6179;
- 13cD.-W. Gao, Y. Gao, H. Shao, T.-Z. Qiao, X. Wang, B. B. Sanchez, J. S. Chen, P. Liu, K. M. Engle, Nat. Catal. 2020, 3, 23–29.
- 14
- 14aW. J. Jang, J. Yun, Angew. Chem. Int. Ed. 2019, 58, 18131–18135; Angew. Chem. 2019, 131, 18299–18303.
- 15
- 15aJ. A. Myhill, C. A. Wilhelmsen, L. Zhang, J. P. Morken, J. Am. Chem. Soc. 2018, 140, 15181–15185;
- 15bS. M. Koo, A. J. Vendola, S. N. Momm, J. P. Morken, Org. Lett. 2020, 22, 666–669;
- 15cY. Meng, Z. Kong, J. P. Morken, Angew. Chem. Int. Ed. 2020, 59, 8456–8459; Angew. Chem. 2020, 132, 8534–8537.
- 16
- 16aH. Noguchi, K. Hojo, M. Suginome, J. Am. Chem. Soc. 2007, 129, 758–759;
- 16bH. Noguchi, T. Shioda, C.-M. Chou, M. Suginome, Org. Lett. 2008, 10, 377–380;
- 16cN. Iwadate, M. Suginome, Org. Lett. 2009, 11, 1899–1902.
- 17The absolute stereochemistry of major product 3 a was determined by comparing the optical rotation of corresponding γ-lactone compound with literature value. See the Supporting Information for details.
- 18
- 18aD.-W. Lee, J. Yun, Tetrahedron Lett. 2004, 45, 5415–5417;
- 18bD.-W. Lee, J. Yun, Tetrahedron Lett. 2005, 46, 2037–2039.
- 19W. J. Jang, S. B. Song, S. Lee, S. Y. Yoo, Y. K. Chung, J. Huh, J. Yun, Org. Chem. Front. 2020, 7, 3427–3433.
- 20Selected examples for the copper-catalyzed 1,6-conjugate addition reactions:
- 20aT. den Hartog, S. R. Harutyunyan, D. Font, A. J. Minnaard, B. L. Feringa, Angew. Chem. Int. Ed. 2008, 47, 398–401; Angew. Chem. 2008, 120, 404–407;
- 20bH. Hénon, M. Mauduit, A. Alexakis, Angew. Chem. Int. Ed. 2008, 47, 9122–9124; Angew. Chem. 2008, 120, 9262–9264;
- 20cY. Luo, I. D. Roy, A. G. E. Madec, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 4186–4190; Angew. Chem. 2014, 126, 4270–4274;
- 20dT. den Hartog, Y. Huang, M. Fañanás-Mastral, A. Meuwese, A. Rudolph, M. Pérez, A. J. Minnaard, B. L. Feringa, ACS Catal. 2015, 5, 560–574;
- 20eF. Meng, X. Li, S. Torker, Y. Shi, X. Shen, A. H. Hoveyda, Nature 2016, 537, 387–393.
- 21See Table S1–3 in the Supporting Information for details.
- 22A. P. Krapcho, A. J. Lovey, Tetrahedron Lett. 1973, 14, 957–960.
- 23R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier, H. K. Scott, V. K. Aggarwal, Angew. Chem. Int. Ed. 2011, 50, 3760–3763; Angew. Chem. 2011, 123, 3844–3847.
- 24A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat. Chem. 2014, 6, 584–589.
- 25
- 25aS. B. Mahato, K. A. I. Siddiqui, G. Bhattacharya, T. Ghosal, K. Miyahara, M. Sholichin, T. Kawasaki, Nat. Prod. 1987, 50, 245–247;
- 25bM. Amador, X. Ariza, J. Garcia, J. Ortiz, J. Org. Chem. 2004, 69, 8172–8175;
- 25cR. A. Fernandes, A. K. Chowdhury, Tetrahedron: Asymmetry 2011, 22, 1114–1119.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.