The Discrete Breast Cancer Stem Cell Mammosphere Activity of Group 10-Bis(azadiphosphine) Metal Complexes
Dr. Zhiyin Xiao
School of Chemistry, University of Leicester, Leicester, UK
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Alice Johnson
School of Chemistry, University of Leicester, Leicester, UK
These authors contributed equally to this work.
Search for more papers by this authorDr. Kuldip Singh
School of Chemistry, University of Leicester, Leicester, UK
Search for more papers by this authorCorresponding Author
Dr. Kogularamanan Suntharalingam
School of Chemistry, University of Leicester, Leicester, UK
Search for more papers by this authorDr. Zhiyin Xiao
School of Chemistry, University of Leicester, Leicester, UK
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Alice Johnson
School of Chemistry, University of Leicester, Leicester, UK
These authors contributed equally to this work.
Search for more papers by this authorDr. Kuldip Singh
School of Chemistry, University of Leicester, Leicester, UK
Search for more papers by this authorCorresponding Author
Dr. Kogularamanan Suntharalingam
School of Chemistry, University of Leicester, Leicester, UK
Search for more papers by this authorAbstract
We report the anti-breast cancer stem cell (CSC) properties of a series of Group 10-bis(azadiphosphine) complexes 1–3 under exclusively three-dimensional cell culture conditions. The breast CSC mammosphere potency of 1–3 is dependent on the Group 10 metal present, increasing in the following order: 1 (nickel complex) <2 (palladium complex) <3 (platinum complex). Notably, 3 reduces the formation and size of mammospheres to a greater extent than salinomycin, an established CSC-active compound, or any reported anti-CSC metal complex tested under similar conditions. Mechanistic studies suggest that the most effective complexes 2 and 3 readily penetrate CSC mammospheres, enter CSC nuclei, induce genomic DNA damage, and trigger caspase-dependent apoptosis. To the best of our knowledge, this is the first study to systematically probe the anti-CSC activity of a series of structurally related Group 10 complexes and to be conducted entirely using three-dimensional CSC culture conditions.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014242-sup-0001-misc_information.pdf2.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem. Rev. 2016, 116, 3436–3486.
- 2M. Galanski, M. A. Jakupec, B. K. Keppler, Curr. Med. Chem. 2005, 12, 2075–2094.
- 3F. Tomao, A. Papa, L. Rossi, M. Strudel, P. Vici, G. Lo Russo, S. Tomao, J. Exp. Clin. Cancer Res. 2013, 32, 48.
- 4L. V. Nguyen, R. Vanner, P. Dirks, C. J. Eaves, Nat. Rev. Cancer 2012, 12, 133–143.
- 5J. Marx, Science 2007, 317, 1029–1031.
- 6
- 6aM. Dean, T. Fojo, S. Bates, Nat. Rev. Cancer 2005, 5, 275–284;
- 6bD. R. Pattabiraman, R. A. Weinberg, Nat. Rev. Drug Discovery 2014, 13, 497–512.
- 7C. Gasch, B. Ffrench, J. J. O'Leary, M. F. Gallagher, Mol. Cancer 2017, 16, 43.
- 8
- 8aL. Wang, X. Liu, Y. Ren, J. Zhang, J. Chen, W. Zhou, W. Guo, X. Wang, H. Chen, M. Li, X. Yuan, X. Zhang, J. Yang, C. Wu, Cell Death Dis. 2017, 8, e2746–e2746;
- 8bK. Suntharalingam, W. Lin, T. C. Johnstone, P. M. Bruno, Y. R. Zheng, M. T. Hemann, S. J. Lippard, J. Am. Chem. Soc. 2014, 136, 14413–14416;
- 8cC. Saygin, A. Wiechert, P. Thiagarajan, V. Rao, J. Hale, M. Hitomi, A. DiFeo, J. Lathia, O. Reizes, J. Clin. Oncol. 2016, 34, e17098–e17098;
- 8dG. Bertolini, L. Roz, P. Perego, M. Tortoreto, E. Fontanella, L. Gatti, G. Pratesi, A. Fabbri, F. Andriani, S. Tinelli, E. Roz, R. Caserini, S. Lo Vullo, T. Camerini, L. Mariani, D. Delia, E. Calabro, U. Pastorino, G. Sozzi, Proc. Natl. Acad. Sci. USA 2009, 106, 16281–16286.
- 9
- 9aN. Aztopal, D. Karakas, B. Cevatemre, F. Ari, C. Icsel, M. G. Daidone, E. Ulukaya, Bioorg. Med. Chem. 2017, 25, 269–276;
- 9bJ. Zajac, V. Novohradsky, L. Markova, V. Brabec, J. Kasparkova, Angew. Chem. Int. Ed. 2020, 59, 3329–3335; Angew. Chem. 2020, 132, 3355–3361;
- 9cH. Kostrhunova, J. Zajac, L. Markova, V. Brabec, J. Kasparkova, Angew. Chem. Int. Ed. 2020, 59, 21157–21162; Angew. Chem. 2020, 132, 21343–21348.
- 10E. Ulukaya, F. M. Frame, B. Cevatemre, D. Pellacani, H. Walker, V. M. Mann, M. S. Simms, M. J. Stower, V. T. Yilmaz, N. J. Maitland, PLoS One 2013, 8, e64278.
- 11
- 11aM. Flamme, P. B. Cressey, C. Lu, P. M. Bruno, A. Eskandari, M. T. Hemann, G. Hogarth, K. Suntharalingam, Chem. Eur. J. 2017, 23, 9674–9682;
- 11bH. Qin, C. Zhao, Y. Sun, J. Ren, X. Qu, J. Am. Chem. Soc. 2017, 139, 16201–16209.
- 12
- 12aZ. Xiao, M. Natarajan, W. Zhong, X. Liu, Electrochim. Acta 2020, 340, 135998;
- 12bC. Fliedel, V. Faramarzi, V. Rosa, B. Doudin, P. Braunstein, Chem. Eur. J. 2014, 20, 1263–1266;
- 12cT. Tanase, M. Tanaka, M. Hamada, Y. Morita, K. Nakamae, Y. Ura, T. Nakajima, Chem. Eur. J. 2019, 25, 8219–8224.
- 13S. J. Berners-Price, A. Filipovska, Metallomics 2011, 3, 863–873.
- 14S. J. Berners-Price, C. K. Mirabelli, R. K. Johnson, M. R. Mattern, F. L. McCabe, L. F. Faucette, C. M. Sung, S. M. Mong, P. J. Sadler, S. T. Crooke, Cancer Res. 1986, 46, 5486–5493.
- 15M. J. McKeage, L. Maharaj, S. J. Berners-Price, Coord. Chem. Rev. 2002, 232, 127–135.
- 16
- 16aG. D. Hoke, R. A. Macia, P. C. Meunier, P. J. Bugelski, C. K. Mirabelli, G. F. Rush, W. D. Matthews, Toxicol. Appl. Pharmacol. 1989, 100, 293–306;
- 16bP. F. Smith, G. D. Hoke, D. W. Alberts, P. J. Bugelski, S. Lupo, C. K. Mirabelli, G. F. Rush, J. Pharmacol. Exp. Ther. 1989, 249, 944–950.
- 17G. Dontu, W. M. Abdallah, J. M. Foley, K. W. Jackson, M. F. Clarke, M. J. Kawamura, M. S. Wicha, Genes Dev. 2003, 17, 1253–1270.
- 18
- 18aK. Laws, G. Bineva-Todd, A. Eskandari, C. Lu, N. O'Reilly, K. Suntharalingam, Angew. Chem. Int. Ed. 2018, 57, 287–291; Angew. Chem. 2018, 130, 293–297;
- 18bJ. N. Boodram, I. J. McGregor, P. M. Bruno, P. B. Cressey, M. T. Hemann, K. Suntharalingam, Angew. Chem. Int. Ed. 2016, 55, 2845–2850; Angew. Chem. 2016, 128, 2895–2900;
- 18cA. Eskandari, A. Kundu, S. Ghosh, K. Suntharalingam, Angew. Chem. Int. Ed. 2019, 58, 12059–12064; Angew. Chem. 2019, 131, 12187–12192.
- 19R. Mezencev, L. Wang, J. F. McDonald, J. Ovarian Res. 2012, 5, 30.
- 20
- 20aE. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, W. M. Bonner, J. Biol. Chem. 1998, 273, 5858–5868;
- 20bJ. Y. Ahn, J. K. Schwarz, H. Piwnica-Worms, C. E. Canman, Cancer Res. 2000, 60, 5934–5936.
- 21R. Raj Kumar, M. K. Mohamed Subarkhan, R. Ramesh, RSC Adv. 2015, 5, 46760–46773.
- 22W. P. Roos, A. D. Thomas, B. Kaina, Nat. Rev. Cancer 2016, 16, 20–33.
- 232035446, 2035447, and 2035448 contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.