Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO2 Nanocrystals
Cong Fu
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorFei Li
Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJiachen Zhang
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDan Li
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Search for more papers by this authorKun Qian
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Search for more papers by this authorYong Liu
State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Junwang Tang
Department of Chemical Engineering, University College London, London, WC1E 7JE UK
Search for more papers by this authorProf. Fengtao Fan
State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Dalian National Laboratory for Clean Energy, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qun Zhang
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xue-Qing Gong
Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weixin Huang
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Dalian National Laboratory for Clean Energy, Dalian, 116023 P. R. China
Search for more papers by this authorCong Fu
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorFei Li
Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJiachen Zhang
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDan Li
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Search for more papers by this authorKun Qian
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Search for more papers by this authorYong Liu
State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Junwang Tang
Department of Chemical Engineering, University College London, London, WC1E 7JE UK
Search for more papers by this authorProf. Fengtao Fan
State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Dalian National Laboratory for Clean Energy, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qun Zhang
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xue-Qing Gong
Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Weixin Huang
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026 P. R. China
Dalian National Laboratory for Clean Energy, Dalian, 116023 P. R. China
Search for more papers by this authorAbstract
Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time-resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk-to-surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold-coordinated Ti sites (Ti4c) at which CH3OH molecules dissociate to form the CH3O adsorbate (CH3O(a)Ti4c). CH3O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk-to-surface hole migration. CH3O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014037-sup-0001-misc_information.pdf4.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Fujishima, K. Honda, Nature 1972, 238, 37–38.
- 2
- 2aY. Wang, et al., Nat. Energy 2019, 4, 746–760;
- 2bU. Ulmer, T. Dingle, P. N. Duchesne, R. H. Morris, A. Tavasoli, T. Wood, G. A. Ozin, Nat. Commun. 2019, 10, 3169.
- 3
- 3aX. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746–750;
- 3bR. Chen, S. Pang, H. An, J. Zhu, S. Ye, Y. Gao, F. Fan, C. Li, Nat. Energy 2018, 3, 655–663;
- 3cB.-H. Lee, et al., Nat. Mater. 2019, 18, 620–626.
- 4H. Chen, C. E. Nanayakkara, V. H. Grassian, Chem. Rev. 2012, 112, 5919–5948.
- 5
- 5aS. Chen, F. Xiong, W. Huang, Surf. Sci. Rep. 2019, 74, 100471;
- 5bL. Wu, C. Fu, W. Huang, Phys. Chem. Chem. Phys. 2020, 22, 9875–9909.
- 6
- 6aZ. Zhang, O. Bondarchuk, J. M. White, B. D. Kay, Z. Dohnálek, J. Am. Chem. Soc. 2006, 128, 4198–4199;
- 6bM. Osmić, L. Mohrhusen, K. Al-Shamery, J. Phys. Chem. C 2019, 123, 7615–7626;
- 6cF. Xiong, Y. Y. Yu, Z. Wu, G. Sun, L. Ding, Y. Jin, X. Q. Gong, W. Huang, Angew. Chem. Int. Ed. 2016, 55, 623–628; Angew. Chem. 2016, 128, 633–638.
- 7M. Shen, M. A. Henderson, J. Phys. Chem. Lett. 2011, 2, 2707–2710.
- 8C. Zhou, et al., Chem. Sci. 2010, 1, 575–580.
- 9
- 9aQ. Guo, C. Xu, Z. Ren, W. Yang, Z. Ma, D. Dai, H. Fan, T. K. Minton, X. Yang, J. Am. Chem. Soc. 2012, 134, 13366–13373;
- 9bM. Setvin, X. Shi, J. Hulva, T. Simschitz, G. S. Parkinson, M. Schmid, V. C. Di, A. Selloni, U. Diebold, ACS Catal. 2017, 7, 7081–7091.
- 10
- 10aK. R. Phillips, S. C. Jensen, M. Baron, S.-C. Li, C. M. Friend, J. Am. Chem. Soc. 2013, 135, 574–577;
- 10bQ. Guo, C. Xu, W. Yang, Z. Ren, Z. Ma, D. Dai, T. K. Minton, X. Yang, J. Phys. Chem. C 2013, 117, 5293–5300;
- 10cQ. Yuan, Z. Wu, Y. Jin, L. Xu, F. Xiong, Y. Ma, W. Huang, J. Am. Chem. Soc. 2013, 135, 5212–5219;
- 10dX. Mao, Z. Wang, X. Lang, Q. Hao, B. Wen, D. Dai, C. Zhou, L.-M. Liu, X. Yang, J. Phys. Chem. C 2015, 119, 6121–6127;
- 10eZ. Wang, Q. Yuan, Z. Zhang, F. Xiong, G. Sun, H. Xu, P. Chai, W. Huang, J. Phys. Chem. C 2019, 123, 31073–31081.
- 11F. Xiong, L.-L. Yin, Z. Wang, Y. Jin, G. Sun, X.-Q. Gong, W. Huang, J. Phys. Chem. C 2017, 121, 9991–9999.
- 12
- 12aD. A. Bennett, M. Cargnello, T. R. Gordon, C. B. Murray, J. M. Vohs, Phys. Chem. Chem. Phys. 2015, 17, 17190–17201;
- 12bD. A. Bennett, M. Cargnello, B. T. Diroll, C. B. Murray, J. M. Vohs, Surf. Sci. 2016, 654, 1–7.
- 13D. A. Panayotov, S. P. Burrows, J. R. Morris, J. Phys. Chem. C 2012, 116, 6623–6635.
- 14
- 14aM. El-Roz, M. Kus, P. Cool, F. Thibault-Starzyk, J. Phys. Chem. C 2012, 116, 13252–13263;
- 14bM. El-Roz, P. Bazin, M. Daturi, F. Thibault-Starzyk, ACS Catal. 2013, 3, 2790–2798;
- 14cM. El-Roz, P. Bazin, M. Daturi, F. Thibault-Starzyk, Phys. Chem. Chem. Phys. 2015, 17, 11277–11283.
- 15Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, J. Am. Chem. Soc. 2006, 128, 416–417.
- 16X. Wang, A. Kafizas, X. Li, S. J. A. Moniz, P. J. T. Reardon, J. Tang, I. P. Parkin, J. R. Durrant, J. Phys. Chem. C 2015, 119, 10439–10447.
- 17W. Chu, W. A. Saidi, Q. Zheng, Y. Xie, Z. Lan, O. V. Prezhdo, H. Petek, J. Zhao, J. Am. Chem. Soc. 2016, 138, 13740–13749.
- 18D. Li, et al., J. Phys. Chem. C 2019, 123, 10367–10376.
- 19D. Yang, Y. Li, X. Liu, Y. Cao, Y. Gao, Y. R. Shen, W. T. Liu, Proc. Natl. Acad. Sci. USA 2018, 115, E3888–E3894.
- 20
- 20aT. Chen, Z. Feng, G. Wu, J. Shi, G. Ma, P. Ying, C. Li, J. Phys. Chem. C 2007, 111, 8005–8014;
- 20bZ. Wang, F. Xiong, G. Sun, Y. Jin, W. Huang, Chin. J. Chem. 2017, 35, 889–895.
- 21G. S. Foo, G. Hu, Z. D. Hood, M. Li, D.-e. Jiang, Z. Wu, ACS Catal. 2017, 7, 5345–5356.
- 22Y. Li, et al., Nat. Commun. 2017, 8, 581.
- 23W. Yuan, Y. Wang, H. Li, H. Wu, Z. Zhang, A. Selloni, C. Sun, Nano Lett. 2016, 16, 132–137.
- 24
- 24aW. Hebenstreit, N. Ruzycki, G. S. Herman, Y. Gao, U. Diebold, Phys. Rev. B 2000, 62, R16334;
- 24bA. Dahal, N. G. Petrik, Y. Wu, G. A. Kimmel, F. Gao, Y. Wang, Z. Dohnálek, J. Phys. Chem. C 2019, 123, 24133–24145.
- 25
- 25aN. Ruzycki, G. S. Herman, L. A. Boatner, U. Diebold, Surf. Sci. 2003, 529, L239–L244;
- 25bM. Zuleta, S. Yu, S. Ahmadi, G. Boschloo, M. Göthelid, A. J. L. Hagfeldt, Langmuir 2010, 26, 13236–13244.
- 26
- 26aT. Berger, M. Sterrer, O. Diwald, E. Knözinger, D. Panayotov, T. L. Thompson, J. T. Yates, J. Phys. Chem. B 2005, 109, 6061–6068;
- 26bD. A. Panayotov, S. P. Burrows, J. R. Morris, J. Phys. Chem. C 2012, 116, 4535–4544.
- 27
- 27aR.-R. Feng, A.-A. Liu, S. Liu, J. Shi, R. Zhang, Z. Ren, J. Phys. Chem. C 2015, 119, 9798–9804;
- 27bA. S. Crampton, L. Cai, N. Janvelyan, X. Zheng, C. M. Friend, J. Phys. Chem. C 2017, 121, 9910–9919.
- 28
- 28aA. Mattsson, S. L. Hu, K. Hermansson, L. Osterlund, J. Vac. Sci. Technol. A 2014, 32, 061402;
- 28bS. Chen, T. Cao, Y. Gao, D. Li, F. Xiong, W. Huang, J. Phys. Chem. C 2016, 120, 21472–21485;
- 28cY. Wang, B. Wen, A. Dahal, G. A. Kimmel, R. Rousseau, A. Selloni, N. G. Petrik, Z. Dohnálek, J. Phys. Chem. C 2020, 124, 20228–20239;
- 28dX. Peng, R. Zhang, R.-R. Feng, A.-A. Liu, C. Zhou, Q. Guo, X. Yang, Y. Jiang, Z. Ren, J. Phys. Chem. C 2019, 123, 13789–13794;
- 28eL. Ding, M. Li, Y. Zhao, H. Zhang, J. Shang, J. Zhong, H. Sheng, C. Chen, J. Zhao, Appl. Catal. B 2020, 266, 118634;
- 28fX. Chen, G. He, Y. Li, M. Chen, X. Qin, C. Zhang, H. He, ACS Catal. 2020, 10, 9706–9715;
- 28gL.-F. Liao, W.-C. Wu, C.-Y. Chen, J.-L. Lin, J. Phys. Chem. B 2001, 105, 7678–7685.
- 29D. Sporleder, D. P. Wilson, M. G. White, J. Phys. Chem. C 2009, 113, 13180–13191.
- 30
- 30aP. V. Kamat, I. Bedja, S. Hotchandani, J. Phys. Chem. 1994, 98, 9137–9142;
- 30bD. W. Bahnemann, M. Hilgendorff, R. Memming, J. Phys. Chem. B 1997, 101, 4265–4275;
- 30cT. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 2004, 108, 3817–3823.
- 31D. A. Wheeler, J. Z. Zhang, Adv. Mater. 2013, 25, 2878–2896.
- 32
- 32aS. Chen, D. Li, Y. Liu, W. Huang, J. Catal. 2016, 341, 126–135;
- 32bF. J. Knorr, C. C. Mercado, J. L. McHale, J. Phys. Chem. C 2008, 112, 12786–12794;
- 32cC. C. Mercado, F. J. Knorr, J. L. McHale, S. M. Usmani, A. S. Ichimura, L. V. Saraf, J. Phys. Chem. C 2012, 116, 10796–10804.
- 33M. D′Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, F. Morazzoni, J. Am. Chem. Soc. 2011, 133, 17652–17661.
- 34
- 34aP. Maity, O. F. Mohammed, K. Katsiev, H. Idriss, J. Phys. Chem. C 2018, 122, 8925–8932;
- 34bM. Xu, Y. Gao, E. Martinez Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, C. Wöll, Phys. Rev. Lett. 2011, 106, 138302;
- 34cM. A. Nadeem, G. I. A. Waterhouse, H. Idress, Surf. Sci. 2016, 650, 40–50.
- 35C. Guo, X. Meng, H. Fu, Q. Wang, H. Wang, Y. Tian, J. Peng, R. Ma, Y. Weng, S. Meng, E. Wang, Y. Jiang, Phys. Rev. Lett. 2020, 124, 206801.
- 36Z. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520–5551.
- 37Z. Chen, Q. Zhang, Y. Luo, Angew. Chem. Int. Ed. 2018, 57, 5320–5324; Angew. Chem. 2018, 130, 5418–5422.
- 38G. L. Chiarello, D. Ferri, E. Selli, J. Catal. 2011, 280, 168–177.
- 39
- 39aM. Shen, M. A. Henderson, J. Phys. Chem. C 2012, 116, 18788–18795;
- 39bC. Xu, W. Yang, Q. Guo, D. Dai, M. Chen, X. Yang, Chin. J. Catal. 2014, 35, 416–422.
- 40
- 40aA. Y. Ahmed, T. A. Kandiel, T. Oekermann, D. Bahnemann, J. Phys. Chem. Lett. 2011, 2, 2461–2465;
- 40bA. Y. Ahmed, T. A. Kandiel, I. Ivanova, D. J. A. S. S. Bahnemann, Appl. Surf. Sci. 2014, 319, 44–49.
- 41A. Yamakata, T.-a. Ishibashi, H. Onishi, J. Phys. Chem. B 2003, 107, 9820–9823.
- 42
- 42aY. Du, N. A. Deskins, Z. Zhang, Z. Dohnálek, M. Dupuis, I. Lyubinetsky, J. Phys. Chem. C 2009, 113, 666–671;
- 42bH. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc. 2019, 141, 20507–20515.
- 43Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302–11336.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.