Gradient Solid Electrolyte Interphase and Lithium-Ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries
Fang Li
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorJian He
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorJiandong Liu
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorMingguang Wu
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorYuyang Hou
CSIRO Mineral Resources, Clayton, VIC, 3168 Australia
Search for more papers by this authorHuaping Wang
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorShihan Qi
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorQuanhui Liu
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorJiawen Hu
State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Jianmin Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorFang Li
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorJian He
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorJiandong Liu
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorMingguang Wu
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorYuyang Hou
CSIRO Mineral Resources, Clayton, VIC, 3168 Australia
Search for more papers by this authorHuaping Wang
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorShihan Qi
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorQuanhui Liu
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorJiawen Hu
State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Jianmin Ma
School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorAbstract
The structures and components of solid electrolyte interphase (SEI) are extremely important to influence the performance of full cells, which is determined by the formulation of electrolyte used. However, it is still challenging to control the formation of high-quality SEI from structures to components. Herein, we designed bisfluoroacetamide (BFA) as the electrolyte additive for the construction of a gradient solid electrolyte interphase (SEI) structure that consists of a lithophilic surface with C−F bonds to uniformly capture Li ions and a LiF-rich bottom layer to guide the rapid transportation of Li ions, endowing the homogeneous deposition of Li ions. Moreover, the BFA molecule changes the Li+ solvation structure by reducing free solvents in electrolyte to improve the antioxidant properties of electrolyte and prevent the extensive degradation of electrolyte on the cathode surface, which can make a superior cathode electrolyte interphase (CEI) with high-content LiF.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013993-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Nat. Energy 2019, 4, 180–186.
- 2X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473.
- 3J. Taracson, M. Armand, Nature 2001, 414, 359–367.
- 4B. Liu, J.-G. Zhang, W. Xu, Joule 2018, 2, 833–845.
- 5C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, Adv. Mater. 2017, 29, 1701169.
- 6C. Fang, X. Wang, Y. S. Meng, Trends Chem. 2019, 1, 152–158.
- 7S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia, J. Li, Adv. Mater. 2018, 30, 1706375.
- 8P. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 2018, 3, 16–21.
- 9Y. Jiang, C. Qin, P. Yan, M. Sui, J. Mater. Chem. A 2019, 7, 20824–20831.
- 10C. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, Nano Lett. 2017, 17, 565–571.
- 11J. Shim, L. Kim, H. J. Kim, D. Jeong, J. H. Lee, J.-C. Lee, Polymer 2017, 122, 222–231.
- 12Q. Li, S. Zhu, Y. Lu, Adv. Funct. Mater. 2017, 27, 1606422.
- 13H. Zhao, D. Lei, Y. B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q. H. Yang, F. Kang, Adv. Energy Mater. 2018, 8, 1800266.
- 14P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo, X. Gu, W. Yang, S. Cui, B. Li, S. Yang, Adv. Energy Mater. 2020, 10, 1903339.
- 15W. Zhao, J. Yi, P. He, H. Zhou, Electrochem. Energy Rev. 2019, 2, 574—605.
- 16H. Liu, X.-B. Cheng, J.-Q. Huang, H. Yuan, Y. Lu, C. Yan, G.-L. Zhu, R. Xu, C.-Z. Zhao, L.-P. Hou, ACS Energy Lett. 2020, 5, 833–843.
- 17D. Chen, S. Huang, L. Zhong, S. Wang, M. Xiao, D. Han, Y. Meng, Adv. Funct. Mater. 2020, 30, 1907717.
- 18S. Liu, X. Xia, S. Deng, D. Xie, Z. Yao, L. Zhang, S. Zhang, X. Wang, J. Tu, Adv. Mater. 2019, 31, 1806470.
- 19Q. Dong, B. Hong, H. Fan, H. Jiang, K. Zhang, Y. Lai, ACS Appl. Mater. Interfaces 2020, 12, 627–636.
- 20E. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703.
- 21E. Peled, J. Electrochem. Soc. 1979, 126, 2047–2051.
- 22D. Aurbach, Y. Ein-Ely, A. Zaban, J. Electrochem. Soc. 1994, 141, L1–L3.
- 23Y. Li, W. Huang, Y. Li, A. Pei, D. T. Boyle, Y. Cui, Joule 2018, 2, 2167–2177.
- 24G. Zheng, Y. Xiang, S. Chen, S. Ganapathy, T. W. Verhallen, M. Liu, G. Zhong, J. Zhu, X. Han, W. Wang, Energy Storage Mater. 2020, 29, 377–385.
- 25Z. Xie, Z. Wu, X. An, X. Yue, A. Yoshida, X. Du, X. Hao, A. Abudula, G. Guan, Chem. Eng. J. 2020, 393, 124789.
- 26S. Choudhury, L. A. Archer, Adv. Electron. Mater. 2016, 2, 1500246.
- 27H. Ota, K. Shima, M. Ue, J.-i. Yamaki, Electrochim. Acta 2004, 49, 565–572.
- 28Q. C. Liu, J. J. Xu, S. Yuan, Z. W. Chang, D. Xu, Y. B. Yin, L. Li, H. X. Zhong, Y. S. Jiang, J. M. Yan, Adv. Mater. 2015, 27, 5241–5247.
- 29J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter, P. Bieker, J. Electrochem. Soc. 2015, 162, A1094.
- 30H. S. Kim, R. Verma, J. Kim, C. J. Park, ACS Sustainable Chem. Eng. 2020, 8, 11123–11132.
- 31Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, C. Wu, Energy Storage Mater. 2019, 16, 411–418.
- 32J. Ko, Y. S. Yoon, Ceram. Int. 2019, 45, 30–49.
- 33Y. Yuan, F. Wu, G. Chen, Y. Bai, C. Wu, J. Energy Chem. 2019, 37, 197–203.
- 34X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.
- 35X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, Chem 2018, 4, 174–185.
- 36J. Fu, X. Ji, J. Chen, L. Chen, X. Fan, D. Mu, C. Wang, Angew. Chem. Int. Ed. 2020, 59, 22194–22201; Angew. Chem. 2020, 132, 22378–22385.
- 37L. Suo, W. Xue, M. Gobet, S. G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Proc. Natl. Acad. Sci. USA 2018, 115, 1156–1161.
- 38P. Olivato, S. Guerrero, M. Yreijo, R. Rittner, C. Tormena, J. Mol. Struct. 2002, 607, 87–99.
- 39Y. Yu, G. Huang, J. Z. Wang, K. Li, J. L. Ma, X. B. Zhang, Adv. Mater. 2020, 32, 2004157.
- 40A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132–1139.
- 41J. Heine, S. Krüger, C. Hartnig, U. Wietelmann, M. Winter, P. Bieker, Adv. Energy Mater. 2014, 4, 1300815.
- 42H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, J. Am. Chem. Soc. 2018, 140, 17515–17521.
- 43L. Sepulveda, J. Cortés, J. Phys. Chem. 1985, 89, 5322–5324.
- 44J. Yan, D. Wang, F. Bu, F. F. Yang, J. Solution Chem. 2010, 39, 1501–1508.
- 45S. Liu, X. Ji, J. Yue, S. Hou, P. Wang, C. Cui, J. Chen, B. Shao, J. Li, F. Han, J. Am. Chem. Soc. 2020, 142, 2438–2447.
- 46L. Xing, O. Borodin, G. D. Smith, W. Li, J. Phys. Chem. A 2011, 115, 13896–13905.
- 47V. W. C. Arthur, M. Gobet, O. Borodin, J. Peng, S. M. Russell, E. Wikner, A. Fu, L. Hu, H. S. Lee, Z. Zhang, J. Phys. Chem. C 2015, 119, 27255–27264.
- 48W. Xue, Z. Shi, M. Huang, S. Feng, C. Wang, F. Wang, J. Lopez, B. Qiao, G. Xu, W. Zhang, Energy Environ. Sci. 2020, 13, 212–220.
- 49W. Li, J. N. Reimers, J. R. Dahn, Solid State Ionics 1993, 67, 123–130.
- 50X.-J. Zhu, H.-X. Liu, X.-Y. Gan, M.-H. Cao, J. Zhou, W. Chen, Q. Xu, S.-X. Ouyang, J. Electroceram. 2006, 17, 645–649.
- 51H. Xie, K. Du, G. Hu, J. Duan, Z. Peng, Z. Zhang, Y. Cao, J. Mater. Chem. A 2015, 3, 20236–20243.
- 52S. Li, W. Zhang, Q. Wu, L. Fan, Y. Lu, Angew. Chem. Int. Ed. 2020, 59, 14935–14941; Angew. Chem. 2020, 132, 15045–15051.
- 53S. Lin, H. Hua, Z. Li, J. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 33710–33718.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.