Phosphinylation of Non-activated Aryl Fluorides through Nucleophilic Aromatic Substitution at the Boundary of Concerted and Stepwise Mechanisms
Zhensheng You
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorDr. Kosuke Higashida
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021 Japan
Search for more papers by this authorCorresponding Author
Dr. Tomohiro Iwai
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Masaya Sawamura
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021 Japan
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorZhensheng You
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorDr. Kosuke Higashida
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021 Japan
Search for more papers by this authorCorresponding Author
Dr. Tomohiro Iwai
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Masaya Sawamura
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021 Japan
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorAbstract
Non-activated aryl fluorides reacted with potassium diorganophosphinites through a nucleophilic aromatic substitution (SNAr) reaction. Remarkably, both electron-neutral and electron-rich aryl fluorides participated in the reaction with substantially stabilized anionic P nucleophiles to form the corresponding tertiary phosphine oxides. Quantum chemical calculations suggested a nucleophile-dependent mechanism that involves both concerted and stepwise SNAr reaction pathways.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013544-sup-0001-misc_information.pdf35.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. F. Bunnett, R. E. Zahler, Chem. Rev. 1951, 49, 273–412.
- 2F. Terrier, Chem. Rev. 1982, 82, 77–152.
- 3V. M. Vlasov, J. Fluorine Chem. 1993, 61, 193–216.
- 4For selected reviews on CSNAr reactions, see:
- 4aC. N. Neumann, T. Ritter, Acc. Chem. Res. 2017, 50, 2822–2833;
- 4bA. J. J. Lennox, Angew. Chem. Int. Ed. 2018, 57, 14686–14688; Angew. Chem. 2018, 130, 14898–14900;
- 4cS. Rohrbach, A. J. Smith, J. H. Pang, D. L. Poole, T. Tuttle, S. Chiba, J. A. Murphy, Angew. Chem. Int. Ed. 2019, 58, 16368–16388; Angew. Chem. 2019, 131, 16518–16540.
- 5For seminal reports on CSNAr reactions, see:
- 5aC. N. Neumann, J. M. Hooker, T. Ritter, Nature 2016, 534, 369–373;
- 5bE. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat. Chem. 2018, 10, 917–923;
- 5cS. Rohrbach, J. A. Murphy, T. Tuttle, J. Am. Chem. Soc. 2020, 142, 14871–14876.
- 6For selected examples of SNAr reactions of unactivated aryl fluorides, see: [C nucleophiles]:
- 6aS. Caron, E. Vazquez, J. M. Wojcik, J. Am. Chem. Soc. 2000, 122, 712–713;
- 6bN. P. Bizier, J. W. Wackerly, E. D. Braunstein, M. Zhang, S. T. Nodder, S. M. Carlin, J. L. Katz, J. Org. Chem. 2013, 78, 5987–5998;
- 6cK. Fuchibe, H. Imaoka, J. Ichikawa, Chem. Asian J. 2017, 12, 2359–2363;
- 6dK. Yasui, M. Kamitani, M. Tobisu, Angew. Chem. Int. Ed. 2019, 58, 14157–14161; Angew. Chem. 2019, 131, 14295–14299; [O nucleophiles]
- 6eJ. Su, Q. Chen, L. Lu, Y. Ma, G. H. L. Auyoung, R. Hua, Tetrahedron 2018, 74, 303–307; [N nucleophiles]:
- 6fF. Diness, D. P. Fairlie, Angew. Chem. Int. Ed. 2012, 51, 8012–8016; Angew. Chem. 2012, 124, 8136–8140; [Si nucleophiles]
- 6gX.-W. Liu, C. Zarate, R. Martin, Angew. Chem. Int. Ed. 2019, 58, 2064–2068; Angew. Chem. 2019, 131, 2086–2090;
- 6hS. Mallick, P. Xu, E.-U. Würthwein, A. Studer, Angew. Chem. Int. Ed. 2019, 58, 283–287; Angew. Chem. 2019, 131, 289–293;
- 6iK. Kojima, Y. Nagashima, C. Wang, M. Uchiyama, ChemPlusChem 2019, 84, 277–280.
- 7For selected examples of catalytic SNAr reactions of aryl fluorides, see:
- 7aM. Otsuka, K. Endo, T. Shibata, Chem. Commun. 2010, 46, 336–338;
- 7bQ.-K. Kang, Y. Lin, Y. Li, H. Shi, J. Am. Chem. Soc. 2020, 142, 3706–3711.
- 8For the SNAr reaction of aryl fluorosulfonates with tetramethylammonium fluoride, which does not require an electron-withdrawing substituent at the aromatic ring, see: S. D. Schimler, M. A. Cismesia, P. S. Hanley, R. D. J. Froese, M. J. Jansma, D. C. Bland, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 1452–1455.
- 9
- 9aG. P. Horsman, D. L. Zechel, Chem. Rev. 2017, 117, 5704–5783;
- 9bA. W. G. Platt, Coord. Chem. Rev. 2017, 340, 62–78;
- 9cT. Baumgartner, Acc. Chem. Res. 2014, 47, 1613–1622;
- 9dT. Baumgartner, R. Réau, Chem. Rev. 2006, 106, 4681–4727;
- 9eL. D. Quin, A Guide to Organophosphorus Chemistry, Wiley-Interscience, New York, 2000, ISBN: 9780471318248.
- 10For selected examples, see:
- 10aO. Herd, K. P. Langhans, O. Stelzer, N. Weferling, W. S. Sheldrick, Angew. Chem. Int. Ed. Engl. 1993, 32, 1058–1059; Angew. Chem. 1993, 105, 1097–1099;
- 10bK. Kirschke, J. Deutsch, H.-J. Niclas, Phosphorus Sulfur Silicon Relat. Elem. 1996, 117, 293–298;
- 10cL. I. Goryunov, J. Grobe, V. D. Shteingarts, B. Krebs, A. Lindemann, E.-U. Würthwein, C. Mück-Lichtenfeld, Chem. Eur. J. 2000, 6, 4612–4622;
10.1002/1521-3765(20001215)6:24<4612::AID-CHEM4612>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 10dK. Katagiri, H. Danjo, K. Yamaguchi, T. Imamoto, Tetrahedron 2005, 61, 4701–4707;
- 10eY. Yamamoto, T. Koizumi, K. Katagiri, Y. Furuya, H. Danjo, T. Imamoto, K. Yamaguchi, Org. Lett. 2006, 8, 6103–6106;
- 10fB. A. Baker, Ž. V. Bošković, B. H. Lipshutz, Org. Lett. 2008, 10, 289–292;
- 10gP. E. Romero, M. T. Whited, R. H. Grubbs, Organometallics 2008, 27, 3422–3429;
- 10hL. I. Goryunov, J. Grobe, D. Le Van, V. D. Shteingarts, R. Mews, E. Lork, E.-U. Würthwein, Eur. J. Org. Chem. 2010, 1111–1123;
- 10iA. Reis, D. Dehe, S. Farsadpour, I. Munstein, Y. Sun, W. R. Thiel, New J. Chem. 2011, 35, 2488–2495;
- 10jS. I. Zhivetyeva, L. I. Goryunov, I. Yu. Bagryanskaya, J. Grobe, V. D. Shteingarts, E.-U. Würthwein, J. Fluorine Chem. 2014, 164, 58–69;
- 10kT. Kojima, S. Furukawa, H. Tsuji, E. Nakamura, Chem. Lett. 2014, 43, 676–677;
- 10lM. Onoda, Y. Koyanagi, H. Saito, M. Bhanuchandra, Y. Matano, H. Yorimitsu, Asian J. Org. Chem. 2017, 6, 257–261.
- 11Takita, Chiba and co-workers reported defluorophosphinylation of an electron-deficient aryl fluoride (4-fluorobenzotrifluoride) with sodium phosphinite (R2PO-Na), which was prepared in situ through dearylation of tertiary phosphine oxides with the NaH–iodide composite. C. Tejo, J. H. Pang, D. Y. Ong, M. Oi, M. Uchiyama, R. Takita, S. Chiba, Chem. Commun. 2018, 54, 1782–1785.
- 12Transition-metal-catalyzed cross-coupling is also a powerful approach for C(sp2)−P bond formation. For selected reviews, see:
- 12aA. L. Schwan, Chem. Soc. Rev. 2004, 33, 218–224;
- 12bF. M. J. Tappe, V. T. Trepohl, M. Oestreich, Synthesis 2010, 18, 3037–3062;
- 12cC. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 2011, 111, 7981–8006;
- 12dI. Wauters, W. Debrouwer, C. V. Stevens, Beilstein J. Org. Chem. 2014, 10, 1064–1096;
- 12eR. Henyecz, G. Keglevich, Curr. Org. Synth. 2019, 16, 523–545.
- 13See the Supporting Information for optimization of the reaction conditions and for the procedure of a 2.5 mmol scale reaction.
- 14A. Bhunia, S. R. Yetra, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140–3152.
- 15In the defluorosilylation of aryl fluorides with silyl lithium reagents reported by Würthwein, Studer and co-workers (Ref. [6h]), 4′-fluoro-2,4,6-trimethyl-1,1′-biphenyl with a large torsion angle was an unfavorable substrate for the concerted ipso substitution.
- 16
- 16aH. Xu, K. Yin, W. Huang, Chem. Eur. J. 2007, 13, 10281–10293;
- 16bD. Kim, L. Zhu, J.-L. Brédas, Chem. Mater. 2012, 24, 2604–2610.
- 17See the Supporting Information for X-ray structures. Deposition numbers 2008761 for 4a, 2008762 for (S)-3x, and 2008763 for (S,S)-4b contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 18With 2 d, KOtBu was a more effective base than KHMDS in the reaction of 1 a (27 % vs. 4 %, 7 h) or 1 c (56 % vs. 40 %, 7 h).
- 19
- 19aK. Tamura, M. Sugiya, K. Yoshida, A. Yanagisawa, T. Imamoto, Org. Lett. 2010, 12, 4400–4403;
- 19bT. Imamoto, K. Tamura, Z. Zhang, Y. Horiuchi, M. Sugiya, K. Yoshida, A. Yanagisawa, I. D. Gridnev, J. Am. Chem. Soc. 2012, 134, 1754–1769.
- 20The P=O reduction of (S,S)-4 b proceeded with Ti(OiPr)4 and (EtO)2MeSiH in C6D6/toluene (1:1) at 120 °C for 0.5 h. However, after treatment with S8, a 1:1 mixture of the racemic and meso phosphine sulfides was obtained. See the Supporting Information for details.
- 21See the Supporting Information for the 31P NMR studies in details.
- 22A. J. Kendall, D. T. Seidenkranz, D. R. Tyler, Organometallics 2017, 36, 2412–2417.
- 23For theoretically calculated pKa values of organophosphorus compounds, including secondary phosphine oxides, in DMSO, see: J.-N. Li, L. Liu, Y. Fu, Q.-X. Guo, Tetrahedron 2006, 62, 4453–4462.
- 24Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- 25A. Hellweg, D. Rappoport, Phys. Chem. Chem. Phys. 2015, 17, 1010–1017.
- 26
- 26aF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305;
- 26bF. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
- 27The reaction temperature (120 °C) of the optimal conditions is much higher than that expected from the calculated energy barriers for TS1 and TS2, probably owing to the existence of K[2 a-H] in a less reactive aggregated form. In fact, the reaction proceeds even at room temperature, while it is too slow to reach to completion with a reasonable reaction time (8 %, 72 h).
- 28See the Supporting Information for details about C−H⋅⋅⋅F interactions.
- 29The DFT calculation using potassium diphenylphosphinite (K[2 d-H]) as a P source also showed an energy diagram similar to that with K[2 a-H]. See the Supporting Information for details.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.