Stable Dioxin-Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photo-Coupled Electrocatalysts for CO2 Reduction
Meng Lu
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorMi Zhang
School of Chemistry, South China Normal University, Guangzhou, 510006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Chun-Guang Liu
Department of Chemistry, Faculty of Science, Beihua University, Jilin City, 132013 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jiang Liu
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorLin-Jie Shang
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMin Wang
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorJia-Nan Chang
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorProf. Shun-Li Li
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMeng Lu
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
These authors contributed equally to this work.
Search for more papers by this authorMi Zhang
School of Chemistry, South China Normal University, Guangzhou, 510006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Chun-Guang Liu
Department of Chemistry, Faculty of Science, Beihua University, Jilin City, 132013 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jiang Liu
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorLin-Jie Shang
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorMin Wang
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorJia-Nan Chang
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorProf. Shun-Li Li
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorAbstract
In this work, we rationally designed a series of crystalline and stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs; MPc-TFPN COF, M=Ni, Co, Zn) under the guidance of reticular chemistry. As a novel single-site catalysts (SSCs), NiPc/CoPc-TFPN COF exhibited outstanding activity and selectivity for electrocatalytic CO2 reduction (ECR; Faradaic efficiency of CO (FECO)=99.8(±1.24) %/ 96.1(±1.25) % for NiPc/CoPc-TFPN COF). More importantly, when coupled with light, the FECO and current density (jCO) were further improved across the applied potential range (−0.6 to −1.2 V vs. RHE) compared to the dark environment for NiPc-TFPN COF (jCO increased from 14.1 to 17.5 A g−1 at −0.9 V; FECO reached up to ca. 100 % at −0.8 to −0.9 V). Furthermore, an in-depth mechanism study was established by density functional theory (DFT) simulation and experimental characterization. For the first time, this work explored the application of COFs as photo-coupled electrocatalysts to improve ECR efficiency, which showed the potential of using light-sensitive COFs in the field of electrocatalysis.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202011722-sup-0001-misc_information.pdf5.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, Proc. Natl. Acad. Sci. USA 2009, 106, 1704;
- 1bS. J. Davis, K. Caldeira, H. D. Matthews, Science 2010, 329, 1330;
- 1cB. Obama, Science 2017, 355, 126.
- 2
- 2aP. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal. 2018, 1, 103–110;
- 2bP. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science 2019, 364, eaav3506.
- 3
- 3aJ. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631–675;
- 3bS. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208;
- 3cA. S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H.-S. Oh, P. Strasser, Angew. Chem. Int. Ed. 2015, 54, 10758–10762; Angew. Chem. 2015, 127, 10908–10912.
- 4
- 4aD. Yang, B. Ni, X. Wang, Adv. Energy Mater. 2020, 10, 2001142;
- 4bX. Huang, Q. Shen, J. Liu, N. Yang, G. Zhao, Energy Environ. Sci. 2016, 9, 3161–3171.
- 5D. Yang, H. Yu, T. He, S. Zuo, X. Liu, H. Yang, B. Ni, H. Li, L. Gu, D. Wang, X. Wang, Nat. Commun. 2019, 10, 3844.
- 6
- 6aB. Zhou, X. Kong, S. Vanka, S. Cheng, N. Pant, S. Chu, P. Ghamari, Y. Wang, G. Botton, H. Cuo, Z. Mi, Energy Environ. Sci. 2019, 12, 2842–2848;
- 6bX. Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2019, 141, 10924–10929.
- 7
- 7aW. Ju, A. Bagger, G.-P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser, Nat. Commun. 2017, 8, 944;
- 7bX. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675;
- 7cX. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, J. Am. Chem. Soc. 2017, 139, 14889–14892;
- 7dS. Liu, H. B. Yang, S.-F. Hung, J. Ding, W. Cai, L. Liu, J. Gao, X. Li, X. Ren, Z. Kuang, Y. Huang, T. Zhang, B. Liu, Angew. Chem. Int. Ed. 2020, 59, 798–803; Angew. Chem. 2020, 132, 808–813.
- 8
- 8aM. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Işci, C. P. Berlinguette, M. Robert, Nat. Commun. 2019, 10, 3602;
- 8bX. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675;
- 8cX. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang, W. Pan, Z. Jiang, H. Zheng, M. Lucero, H. Wang, G. E. Sterbinsky, Q. Ma, Y.-G. Wang, Z. Feng, J. Li, H. Dai, Y. Liang, Nat. Energy 2020, 5, 684–692.
- 9C. S. Diercks, Y. Liu, K. E. Cordova, O. M. Yaghi, Nat. Mater. 2018, 17, 301–307.
- 10
- 10aX. Chen, K. Geng, R. Liu, K. T. Tan, Y. Gong, Z. Li, S. Tao, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. 2020, 59, 5050–5091; Angew. Chem. 2020, 132, 5086–5129;
- 10bK. Geng, T. He, R. Liu, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, 120, 8814–8933.
- 11G. de la Torre, C. G. Claessens, T. Torres, Chem. Commun. 2007, 2000–2015.
- 12
- 12aX. Guan, H. Li, Y. Ma, M. Xue, Q. Fang, Y. Yan, V. Valtchev, S. Qiu, Nat. Chem. 2019, 11, 587–594;
- 12bB. Zhang, M. Wei, H. Mao, X. Pei, S. A. Alshmimri, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 12715–12719.
- 13
- 13aE. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672–677;
- 13bX. Ding, J. Guo, X. Feng, Y. Honsho, J. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase, D. Jiang, Angew. Chem. Int. Ed. 2011, 50, 1289–1293; Angew. Chem. 2011, 123, 1325–1329;
- 13cE. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623–2627; Angew. Chem. 2012, 124, 2677–2681;
- 13dS. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 2017–2021; Angew. Chem. 2013, 125, 2071–2075;
- 13eS. Jin, M. Supur, M. Addicoat, K. Furukawa, L. Chen, T. Nakamura, S. Fukuzumi, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7817–7827;
- 13fZ. Meng, R. M. Stolz, K. A. Mirica, J. Am. Chem. Soc. 2019, 141, 11929–11937;
- 13gM. Wang, M. Ballabio, M. Wang, H.-H. Lin, B. P. Biswal, X. Han, S. Paasch, E. Brunner, P. Liu, M. Chen, M. Bonn, T. Heine, S. Zhou, E. Cánovas, R. Dong, X. Feng, J. Am. Chem. Soc. 2019, 141, 16810–16816.
- 14
- 14aW. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc. 2019, 141, 7615–7621;
- 14bY. Zeng, R. Zou, Y. Zhao, Adv. Mater. 2016, 28, 3032–3032;
- 14cW. Zhou, Q.-W. Deng, G.-Q. Ren, L. Sun, L. Yang, Y.-M. Li, D. Zhai, Y.-H. Zhou, W.-Q. Deng, Nat. Commun. 2020, 11, 4481;
- 14dC.-L. Yao, J.-C. Li, W. Gao, Q. Jiang, Chem. Eur. J. 2018, 24, 11051–11058.
- 15J. Jiao, R. Lin, S. Liu, W.-C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S.-F. Hung, H. M. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen, Y. Li, Nat. Chem. 2019, 11, 222–228.
- 16
- 16aN. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S.-T. Lee, Y. Li, Chem 2017, 3, 652–664;
- 16bN. Morlanés, K. Takanabe, V. Rodionov, ACS Catal. 2016, 6, 3092–3095;
- 16cW. W. Kramer, C. C. L. McCrory, Chem. Sci. 2016, 7, 2506–2515;
- 16dN. Huang, K. H. Lee, Y. Yue, X. Xu, S. Irle, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. 2020, 59, 16587–16593; Angew. Chem. 2020, 132, 16730–16736.
- 17
- 17aY. R. Wang, Q. Huang, C. T. He, Y. Chen, J. Liu, F. C. Shen, Y. Q. Lan, Nat. Commun. 2018, 9, 4466;
- 17bH.-J. Zhu, M. Lu, Y.-R. Wang, S.-J. Yao, M. Zhang, Y.-H. Kan, J. Liu, Y. Chen, S.-L. Li, Y.-Q. Lan, Nat. Commun. 2020, 11, 497.
- 18J. Bian, J. Feng, Z. Zhang, Z. Li, Y. Zhang, Y. Liu, S. Ali, Y. Qu, L. Bai, J. Xie, D. Tang, X. Li, F. Bai, J. Tang, L. Jing, Angew. Chem. Int. Ed. 2019, 58, 10873–10878; Angew. Chem. 2019, 131, 10989–10994.
- 19
- 19aX. Zhang, T. Peng, L. Yu, R. Li, Q. Li, Z. Li, ACS Catal. 2015, 5, 504–510;
- 19bM.-E. Ragoussi, J.-J. Cid, J.-H. Yum, G. de la Torre, D. Di Censo, M. Grätzel, M. K. Nazeeruddin, T. Torres, Angew. Chem. Int. Ed. 2012, 51, 4375–4378; Angew. Chem. 2012, 124, 4451–4454;
- 19cX. Zhang, L. Yu, C. Zhuang, T. Peng, R. Li, X. Li, ACS Catal. 2014, 4, 162–170.
- 20
- 20aM. Schreier, F. Héroguel, L. Steier, S. Ahmad, J. S. Luterbacher, M. T. Mayer, J. Luo, M. Grätzel, Nat. Energy 2017, 2, 17087;
- 20bT. G. Ulusoy Ghobadi, A. Ghobadi, M. Buyuktemiz, E. A. Yildiz, D. Berna Yildiz, H. G. Yaglioglu, Y. Dede, E. Ozbay, F. Karadas, Angew. Chem. Int. Ed. 2020, 59, 4082–4090; Angew. Chem. 2020, 132, 4111–4119.
- 21J.-H. Zhou, K. Yuan, L. Zhou, Y. Guo, M.-Y. Luo, X.-Y. Guo, Q.-Y. Meng, Y.-W. Zhang, Angew. Chem. Int. Ed. 2019, 58, 14197–14201; Angew. Chem. 2019, 131, 14335–14339.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.