Unimolecular Anion-Binding Catalysts for Selective Ring-Opening Polymerization of O-carboxyanhydrides
Maosheng Li
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorShuai Zhang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorXiaoyong Zhang
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Search for more papers by this authorYanchao Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorJinlong Chen
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Youhua Tao
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Xianhong Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorMaosheng Li
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorShuai Zhang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorXiaoyong Zhang
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Search for more papers by this authorYanchao Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorJinlong Chen
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Youhua Tao
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Xianhong Wang
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorAbstract
Anion-binding can regulate anion transport in chloride channels through dynamic non-covalent interactions, which gives insights into the designing of new organocatalytic transformations but is surprisingly unexplored in polymerization catalysis. Herein, we describe an effective unimolecular anion-binding organocatalysis where 4-(dimethylamino)pyridine is anchored to a thiourea for ring-opening polymerization of O-carboxyanhydrides (OCAs) to furnish highly isotactic poly(phenyllactic acid) (Ph-PLA) with molecular weight (MW) up to 150.0 kDa, which well addresses the formidable challenge of synthesizing high MW stereoregular polyesters. Calculations and experimental studies indicate a dynamic cooperative anion-binding mechanism, where the dynamic anion-binding interaction of thiourea moiety to propagating species facilitates efficient chain propagation and the synergetic decarboxylation retains high selectivity for OCA ring-opening over side reactions (such as cyclization, epimerization, and transesterification).
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202011352-sup-0001-misc_information.pdf6.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. M. Grayson, J. M. J. Fréchet, Chem. Rev. 2001, 101, 3819–3868;
- 1bN. Hadjichristidis, M. Pitsikalis, S. Pispas, H. Iatrou, Chem. Rev. 2001, 101, 3747–3792;
- 1cM. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev. 2001, 101, 3689–3746;
- 1dC. J. Hawker, K. L. Wooley, Science 2005, 309, 1200–1205;
- 1eC. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1–29;
- 1fG. Moad, E. Rizzardo, S. H. Thang, Acc. Chem. Res. 2008, 41, 1133–1142;
- 1gS. Aoshima, S. Kanaoka, Chem. Rev. 2009, 109, 5245–5287;
- 1hJ. Cheng, T. J. Deming, in Peptide-Based Materials (Ed.: T. Deming), Springer, Berlin, Heidelberg, 2012; pp. 1–26;
- 1iX. Pan, M. A. Tasdelen, J. Laun, T. Junkers, Y. Yagci, K. Matyjaszewski, Prog. Polym. Sci. 2016, 62, 73–125;
- 1jJ.-F. Lutz, ACS Macro Lett. 2020, 9, 185–189;
- 1kM. L. McGraw, E. Y. X. Chen, Macromolecules 2020, 53, 6102–6122;
- 1lM. K. Kiesewetter, E. J. Shin, J. L. Hedrick, R. M. Waymouth, Macromolecules 2010, 43, 2093–2107.
- 2
- 2a Handbook of Ring-Opening Polymerization (Eds.: P. Dubois, O. Coulembier, J. M. Raquez), Wiley-VCH, Weinheim, 2009;
10.1002/9783527628407 Google Scholar
- 2b“Ring-Opening Polymerization and Special Polymerization Processes”. in Polymer Science: A Comprehensive Reference, Vol. 4 (Eds.: K. Matyjaszewski, M. Möller), Elsevier BV, Amsterdam, 2012;
- 2cX.-B. Lu, W.-M. Ren, G.-P. Wu, Acc. Chem. Res. 2012, 45, 1721–1735;
- 2dM. A. Hillmyer, W. B. Tolman, Acc. Chem. Res. 2014, 47, 2390–2396;
- 2eJ. M. Longo, M. J. Sanford, G. W. Coates, Chem. Rev. 2016, 116, 15167–15197;
- 2fT. Steinbach, F. R. Wurm, Angew. Chem. Int. Ed. 2015, 54, 6098–6108; Angew. Chem. 2015, 127, 6196–6207;
- 2gA. P. Dove, R. C. Pratt, B. G. G. Lohmeijer, R. M. Waymouth, J. L. Hedrick, J. Am. Chem. Soc. 2005, 127, 13798–13799;
- 2hM. Hong, E. Y. X. Chen, Nat. Chem. 2016, 8, 42–49;
- 2iX. Zhang, G. O. Jones, J. L. Hedrick, R. M. Waymouth, Nat. Chem. 2016, 8, 1047–1053;
- 2jN. Zhao, C. Ren, H. Li, Y. Li, S. Liu, Z. Li, Angew. Chem. Int. Ed. 2017, 56, 12987–12990; Angew. Chem. 2017, 129, 13167–13170;
- 2kC.-J. Zhang, H.-L. Wu, Y. Li, J.-L. Yang, X.-H. Zhang, Nat. Commun. 2018, 9, 2137;
- 2lS. Liu, T. Bai, K. Ni, Y. Chen, J. Zhao, J. Ling, X. Ye, G. Zhang, Angew. Chem. Int. Ed. 2019, 58, 15478–15487; Angew. Chem. 2019, 131, 15624–15633;
- 2mJ. Yuan, W. Xiong, X. Zhou, Y. Zhang, D. Shi, Z. Li, H. Lu, J. Am. Chem. Soc. 2019, 141, 4928–4935;
- 2nG.-W. Yang, Y.-Y. Zhang, R. Xie, G.-P. Wu, J. Am. Chem. Soc. 2020, 142, 12245–12255;
- 2oG. S. Sulley, G. L. Gregory, T. T. D. Chen, L. Peña Carrodeguas, G. Trott, A. Santmarti, K.-Y. Lee, N. J. Terrill, C. K. Williams, J. Am. Chem. Soc. 2020, 142, 4367–4378.
- 3O. Thillaye du Boullay, E. Marchal, B. Martin-Vaca, F. P. Cossío, D. Bourissou, J. Am. Chem. Soc. 2006, 128, 16442–16443.
- 4Q. Yin, L. Yin, H. Wang, J. Cheng, Acc. Chem. Res. 2015, 48, 1777–1787.
- 5
- 5aT. L. Simmons, G. L. Baker, Biomacromolecules 2001, 2, 658–663;
- 5bQ. Yin, R. Tong, Y. Xu, K. Baek, L. W. Dobrucki, T. M. Fan, J. Cheng, Biomacromolecules 2013, 14, 920–929.
- 6
- 6aY. Sun, Z. Jia, C. Chen, Y. Cong, X. Mao, J. Wu, J. Am. Chem. Soc. 2017, 139, 10723–10732;
- 6bP. Wang, J. Liang, T. Yin, J. Yang, Polym. Chem. 2019, 10, 5498–5506;
- 6cY. Cui, J. Jiang, X. Pan, J. Wu, Chem. Commun. 2019, 55, 12948–12951;
- 6dS. K. Raman, R. Raja, P. L. Arnold, M. G. Davidson, C. K. Williams, Chem. Commun. 2019, 55, 7315–7318;
- 6eQ. Feng, Y. Zhong, L. Xie, R. Tong, Synlett 2017, 28, 1857–1866;
- 6fB. Martin Vaca, D. Bourissou, ACS Macro Lett. 2015, 4, 792–798;
- 6gM. Li, Y. Tao, J. Tang, Y. Wang, X. Zhang, Y. Tao, X. Wang, J. Am. Chem. Soc. 2019, 141, 281–289;
- 6hY. Zhong, R. Tong, Front. Chem. 2018, 6, 641;
- 6iA. Buchard, D. R. Carbery, M. G. Davidson, P. K. Ivanova, B. J. Jeffery, G. I. Kociok-Köhn, J. P. Lowe, Angew. Chem. Int. Ed. 2014, 53, 13858–13861; Angew. Chem. 2014, 126, 14078–14081;
- 6jJ. Jiang, Y. Cui, Y. Lu, B. Zhang, X. Pan, J. Wu, Macromolecules 2020, 53, 946–955;
- 6kY. Zhong, Q. Feng, X. Wang, J. Chen, W. Cai, R. Tong, ACS Macro Lett. 2020, 9, 1114–1118.
- 7R. Wang, J. Zhang, Q. Yin, Y. Xu, J. Cheng, R. Tong, Angew. Chem. Int. Ed. 2016, 55, 13010–13014; Angew. Chem. 2016, 128, 13204–13208.
- 8
- 8aQ. Feng, R. Tong, J. Am. Chem. Soc. 2017, 139, 6177–6182;
- 8bQ. Feng, L. Yang, Y. Zhong, D. Guo, G. Liu, L. Xie, W. Huang, R. Tong, Nat. Commun. 2018, 9, 1559.
- 9
- 9aN. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. G. Lohmeijer, J. L. Hedrick, Chem. Rev. 2007, 107, 5813–5840;
- 9bW. N. Ottou, H. Sardon, D. Mecerreyes, J. Vignolle, D. Taton, Prog. Polym. Sci. 2016, 56, 64–115.
- 10
- 10aR. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, R. MacKinnon, Nature 2002, 415, 287–294;
- 10bR. Dutzler, E. B. Campbell, R. MacKinnon, Science 2003, 300, 108–112.
- 11Z. Zhang, P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187–1198.
- 12
- 12aC. Caltagirone, P. A. Gale, Chem. Soc. Rev. 2009, 38, 520–563;
- 12bN. Busschaert, C. Caltagirone, W. Van Rossom, P. A. Gale, Chem. Rev. 2015, 115, 8038–8155;
- 12cA. E. Hargrove, S. Nieto, T. Zhang, J. L. Sessler, E. V. Anslyn, Chem. Rev. 2011, 111, 6603–6782.
- 13
- 13aS. Lin, E. N. Jacobsen, Nat. Chem. 2012, 4, 817–824;
- 13bR. S. Klausen, C. R. Kennedy, A. M. Hyde, E. N. Jacobsen, J. Am. Chem. Soc. 2017, 139, 12299–12309;
- 13cA. R. Brown, W.-H. Kuo, E. N. Jacobsen, J. Am. Chem. Soc. 2010, 132, 9286–9288;
- 13dC. K. De, N. Mittal, D. Seidel, J. Am. Chem. Soc. 2011, 133, 16802–16805;
- 13eN. Mittal, K. M. Lippert, C. K. De, E. G. Klauber, T. J. Emge, P. R. Schreiner, D. Seidel, J. Am. Chem. Soc. 2015, 137, 5748–5758;
- 13fO. García Mancheño, S. Asmus, M. Zurro, T. Fischer, Angew. Chem. Int. Ed. 2015, 54, 8823–8827; Angew. Chem. 2015, 127, 8947–8951;
- 13gR. J. Phipps, G. L. Hamilton, F. D. Toste, Nat. Chem. 2012, 4, 603–614;
- 13hK. Brak, E. N. Jacobsen, Angew. Chem. Int. Ed. 2013, 52, 534–561; Angew. Chem. 2013, 125, 558–588.
- 14
- 14aC. Thomas, B. Bibal, Green Chem. 2014, 16, 1687–1699;
- 14bB. Lin, R. M. Waymouth, Macromolecules 2018, 51, 2932–2938;
- 14cJ. U. Pothupitiya, R. S. Hewawasam, M. K. Kiesewetter, Macromolecules 2018, 51, 3203–3211;
- 14dN. U. Dharmaratne, J. U. Pothupitiya, M. K. Kiesewetter, Org. Biomol. Chem. 2019, 17, 3305–3313.
- 15H. A. Brown, R. M. Waymouth, Acc. Chem. Res. 2013, 46, 2585–2596.
- 16The nucleofugality of the nucleophile reflects its leaving ability after the nucleophile attacks the electrophilic monomer.[15] For ring-opening polymerization (ROP) initiated by nucleophile with strong nucleofugality, cyclization reaction through liberating nucleophile catalyst would easily occur in high monomer conversion, thereby detrimental to the synthesis of high molecular weight polymers. In order to compare the nucleofugality between catalyst 3 a and 3 b more intuitively, we conducted nucleophilic substitution model reactions between methanol (MeOH) and the anion-binding electrophilic intermediates produced via mixing of catalyst 3 a or 3 b with succinic anhydride (SA) at 1:1 ratio (See Figure S40).
- 17K. Matyjaszewski, J. Phys. Org. Chem. 1995, 8, 197–207.
- 18L. Guo, S. H. Lahasky, K. Ghale, D. Zhang, J. Am. Chem. Soc. 2012, 134, 9163–9171.
- 19
- 19aM. Fèvre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton, Chem. Soc. Rev. 2013, 42, 2142–2172;
- 19bA. K. Acharya, Y. A. Chang, G. O. Jones, J. E. Rice, J. L. Hedrick, H. W. Horn, R. M. Waymouth, J. Phys. Chem. B 2014, 118, 6553–6560.
- 20
- 20aW. Jeong, J. L. Hedrick, R. M. Waymouth, J. Am. Chem. Soc. 2007, 129, 8414–8415;
- 20bD. A. Culkin, W. Jeong, S. Csihony, E. D. Gomez, N. P. Balsara, J. L. Hedrick, R. M. Waymouth, Angew. Chem. Int. Ed. 2007, 46, 2627–2630; Angew. Chem. 2007, 119, 2681–2684;
- 20cW. Jeong, E. J. Shin, D. A. Culkin, J. L. Hedrick, R. M. Waymouth, J. Am. Chem. Soc. 2009, 131, 4884–4891.
- 21Although the cooperative propagation process via TS4 shows a slightly higher activation barrier than that of TS4′ (13.6 kcal mol−1 vs. 12.0 kcal mol−1), it should be noted that the current calculation assumes identical concentration for catalyst and monomer. Taking into account the concentration difference, the nucleophilic attack onto the monomer would be more favored over back-biting,[19b] which is also supported by our experimental observations of high MW polymers and no lactide formation.
- 22G. Tárkányi, P. Király, T. Soós, S. Varga, Chem. Eur. J. 2012, 18, 1918–1922.
- 23O. I. Kazakov, P. P. Datta, M. Isajani, E. T. Kiesewetter, M. K. Kiesewetter, Macromolecules 2014, 47, 7463–7468.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.