Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells
Corresponding Author
Prof. Zhi-Guo Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Yongfang Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Guo Zhang
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Yongfang Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorAbstract
All-polymer solar cells (all-PSCs) have drawn tremendous research interest in recent years, due to their inherent advantages of good film formation, stable morphology, and mechanical flexibility. The most representative and most widely used n-CP acceptor was the naphthalene diimide based D-A copolymer N2200 before 2017, and the power conversion efficiency (PCE) of the all-PSCs based on N2200 reached over 8% in 2016. However, the low absorption coefficient of N2200 in the near-infrared (NIR) region limits the further increase of its PCE. In 2017, we proposed a strategy of polymerizing small-molecule acceptors (SMAs) to construct new-generation polymer acceptors. The polymerized SMAs (PSMAs) possess low band gap and strong absorption in the NIR region, which attracted great attention and drove the PCE of the all-PSCs to over 15% recently. In this Minireview we explain the design strategies of the molecular structure of PSMAs and describe recent research progress. Finally, current challenges and future prospects of the PSMAs are analyzed and discussed.
Conflict of interest
The authors declare no conflict of interest.
References
- 1Y. Li, Acc. Chem. Res. 2012, 45, 723–733.
- 2
- 2aN. A. Ran, J. A. Love, C. J. Takacs, A. Sadhanala, J. K. Beavers, S. D. Collins, Y. Huang, M. Wang, R. H. Friend, G. C. Bazan, T.-Q. Nguyen, Adv. Mater. 2016, 28, 1482–1488;
- 2bJ. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.
- 3
- 3aP. Cheng, G. Li, X. Zhan, Y. Yang, Nat. Photonics 2018, 12, 131–142;
- 3bX. Wan, C. Li, M. Zhang, Y. Chen, Chem. Soc. Rev. 2020, 49, 2828–2842.
- 4
- 4aY. Xu, J. Yuan, S. Zhou, M. Seifrid, L. Ying, B. Li, F. Huang, G. C. Bazan, W. Ma, Adv. Funct. Mater. 2019, 29, 1806747;
- 4bY. Zhang, Y. Xu, M. J. Ford, F. Li, J. Sun, X. Ling, Y. Wang, J. Gu, J. Yuan, W. Ma, Adv. Energy Mater. 2018, 8, 1800029.
- 5J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498–500.
- 6G. Yu, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510–4515.
- 7G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789–1791.
- 8Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 2014, 5, 5293.
- 9J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 2016, 1, 15027.
- 10C. Lee, S. Lee, G.-U. Kim, W. Lee, B. J. Kim, Chem. Rev. 2019, 119, 8028–8086.
- 11
- 11aG. Sang, E. Zhou, Y. Huang, Y. Zou, G. Zhao, Y. Li, J. Phys. Chem. C 2009, 113, 5879–5885;
- 11bY. Zou, J. Hou, C. Yang, Y. Li, Macromolecules 2006, 39, 8889–8891.
- 12
- 12aH.-G. Flesch, R. Resel, C. R. McNeill, Org. Electron. 2009, 10, 1549–1555;
- 12bD. Mori, H. Benten, H. Ohkita, S. Ito, Adv. Energy Mater. 2015, 5, 1500304;
- 12cC. R. McNeill, A. Abrusci, J. Zaumseil, R. Wilson, M. J. McKiernan, J. H. Burroughes, J. J. M. Halls, N. C. Greenham, R. H. Friend, Appl. Phys. Lett. 2007, 90, 193506.
- 13
- 13aY. He, Y. Li, Phys. Chem. Chem. Phys. 2011, 13, 1970–1983;
- 13bH. Kang, W. Lee, J. Oh, T. Kim, C. Lee, B. J. Kim, Acc. Chem. Res. 2016, 49, 2424–2434.
- 14
- 14aX. Zhan, Z. a. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S. R. Marder, J. Am. Chem. Soc. 2007, 129, 7246–7247;
- 14bH. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
- 15
- 15aG. Wang, F. S. Melkonyan, A. Facchetti, T. J. Marks, Angew. Chem. Int. Ed. 2019, 58, 4129–4142; Angew. Chem. 2019, 131, 4173–4186;
- 15bJ. Yang, B. Xiao, A. Tang, J. Li, X. Wang, E. Zhou, Adv. Mater. 2019, 31, 1804699;
- 15cH. Sun, X. Guo, A. Facchetti, Chem 2020, 6, 1310–1326;
- 15dY.-J. Hwang, B. A. E. Courtright, A. S. Ferreira, S. H. Tolbert, S. A. Jenekhe, Adv. Mater. 2015, 27, 4578–4584.
- 16Z. A. Tan, E. J. Zhou, X. W. Zhan, X. Wang, Y. F. Li, S. Barlow, S. R. Marder, Appl. Phys. Lett. 2008, 93, 073309.
- 17
- 17aJ. R. Moore, S. Albert-Seifried, A. Rao, S. Massip, B. Watts, D. J. Morgan, R. H. Friend, C. R. McNeill, H. Sirringhaus, Adv. Energy Mater. 2011, 1, 230–240;
- 17bS. Fabiano, Z. Chen, S. Vahedi, A. Facchetti, B. Pignataro, M. A. Loi, J. Mater. Chem. 2011, 21, 5891–5896.
- 18
- 18aD. Mori, H. Benten, I. Okada, H. Ohkita, S. Ito, Adv. Energy Mater. 2014, 4, 1301006–1301012;
- 18bH. Kang, M. A. Uddin, C. Lee, K.-H. Kim, T. L. Nguyen, W. Lee, Y. Li, C. Wang, H. Y. Woo, B. J. Kim, J. Am. Chem. Soc. 2015, 137, 2359–2365;
- 18cC. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z. Wei, Y. Yi, J. Wang, S. Yang, F. Huang, A. Facchetti, H. Ade, H. Yan, Adv. Mater. 2014, 26, 7224–7230;
- 18dL. Ye, X. Jiao, M. Zhou, S. Zhang, H. Yao, W. Zhao, A. Xia, H. Ade, J. Hou, Adv. Mater. 2015, 27, 6046–6054.
- 19
- 19aM.-F. Falzon, A. P. Zoombelt, M. M. Wienk, R. A. J. Janssen, Phys. Chem. Chem. Phys. 2011, 13, 8931–8939;
- 19bW. Li, W. S. C. Roelofs, M. Turbiez, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2014, 26, 3304–3309.
- 20R. Stalder, J. Mei, J. Subbiah, C. Grand, L. A. Estrada, F. So, J. R. Reynolds, Macromolecules 2011, 44, 6303–6310.
- 21S. Liu, Z. Kan, S. Thomas, F. Cruciani, J.-L. Brédas, P. M. Beaujuge, Angew. Chem. Int. Ed. 2016, 55, 12996–13000; Angew. Chem. 2016, 128, 13190–13194.
- 22H. Sun, Y. Tang, C. W. Koh, S. Ling, R. Wang, K. Yang, J. Yu, Y. Shi, Y. Wang, H. Y. Woo, X. Guo, Adv. Mater. 2019, 31, 1807220.
- 23
- 23aR. Zhao, J. Liu, L. Wang, Acc. Chem. Res. 2020, 53, 1557–1567;
- 23bC. Dou, Z. Ding, Z. Zhang, Z. Xie, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2015, 54, 3648–3652; Angew. Chem. 2015, 127, 3719–3723;
- 23cX. Long, Z. Ding, C. Dou, J. Zhang, J. Liu, L. Wang, Adv. Mater. 2016, 28, 6504–6508.
- 24
- 24aS. Shi, P. Chen, Y. Chen, K. Feng, B. Liu, J. Chen, Q. Liao, B. Tu, J. Luo, M. Su, H. Guo, M.-G. Kim, A. Facchetti, X. Guo, Adv. Mater. 2019, 31, 1905161;
- 24bK. Feng, J. Huang, X. Zhang, Z. Wu, S. Shi, L. Thomsen, Y. Tian, H. Y. Woo, C. R. McNeill, X. Guo, Adv. Mater. 2020, 32, 2001476.
- 25Z. Genene, W. Mammo, E. Wang, M. R. Andersson, Adv. Mater. 2019, 31, 1807275.
- 26R. Zhao, N. Wang, Y. Yu, J. Liu, Chem. Mater. 2020, 32, 1308–1314.
- 27L. Gao, Z.-G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei, Y. Li, Adv. Mater. 2016, 28, 1884–1890.
- 28Z. Li, W. Zhong, L. Ying, F. Liu, N. Li, F. Huang, Y. Cao, Nano Energy 2019, 64, 103931.
- 29L. Zhu, W. Zhong, C. Qiu, B. Lyu, Z. Zhou, M. Zhang, J. Song, J. Xu, J. Wang, J. Ali, W. Feng, Z. Shi, X. Gu, L. Ying, Y. Zhang, F. Liu, Adv. Mater. 2019, 31, 1902899.
- 30Z.-G. Zhang, Y. Yang, J. Yao, L. Xue, S. Chen, X. Li, W. Morrison, C. Yang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 13503–13507; Angew. Chem. 2017, 129, 13688–13692.
- 31
- 31aT. Jia, J. Zhang, W. Zhong, Y. Liang, K. Zhang, S. Dong, L. Ying, F. Liu, X. Wang, F. Huang, Y. Cao, Nano Energy 2020, 72, 104718;
- 31bW. Wang, Q. Wu, R. Sun, J. Guo, Y. Wu, M. Shi, W. Yang, H. Li, J. Min, Joule 2020, 4, 1070–1086;
- 31cQ. Wu, W. Wang, T. Wang, R. Sun, J. Guo, Y. Wu, X. Jiao, C. J. Brabec, Y. Li, J. Min, Sci. China Chem. 2020, https://doi.org/10.1007/s11426-11020-19785-11427.
- 32
- 32aY. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170–1174;
- 32bJ. Zhang, H. S. Tan, X. Guo, A. Facchetti, H. Yan, Nat. Energy 2018, 3, 720–731;
- 32cD. Meng, H. Fu, C. Xiao, X. Meng, T. Winands, W. Ma, W. Wei, B. Fan, L. Huo, N. L. Doltsinis, Y. Li, Y. Sun, Z. Wang, J. Am. Chem. Soc. 2016, 138, 10184–10190.
- 33Y. Lin, Q. He, F. Zhao, L. Huo, J. Mai, X. Lu, C.-J. Su, T. Li, J. Wang, J. Zhu, Y. Sun, C. Wang, X. Zhan, J. Am. Chem. Soc. 2016, 138, 2973–2976.
- 34
- 34aJ. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140–1151;
- 34bS. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, Y. Cao, Nat. Photonics 2020, 14, 300–305;
- 34cJ. Yuan, T. Huang, P. Cheng, Y. Zou, H. Zhang, J. L. Yang, S.-Y. Chang, Z. Zhang, W. Huang, R. Wang, D. Meng, F. Gao, Y. Yang, Nat. Commun. 2019, 10, 570.
- 35
- 35aY. Cui, H. Yao, L. Hong, T. Zhang, Y. Tang, B. Lin, K. Xian, B. Gao, C. An, P. Bi, W. Ma, J. Hou, Natl. Sci. Rev. 2020, 7, 1239–1246;
- 35bB. Fan, D. Zhang, M. Li, W. Zhong, Z. Zeng, L. Ying, F. Huang, Y. Cao, Sci. China Chem. 2019, 62, 746–752.
- 36Y. Meng, J. Wu, X. Guo, W. Su, L. Zhu, J. Fang, Z.-G. Zhang, F. Liu, M. Zhang, T. P. Russell, Y. Li, Sci. China Chem. 2019, 62, 845–850.
- 37H. Yao, F. Bai, H. Hu, L. Arunagiri, J. Zhang, Y. Chen, H. Yu, S. Chen, T. Liu, J. Y. L. Lai, Y. Zou, H. Ade, H. Yan, ACS Energy Lett. 2019, 4, 417–422.
- 38S. Huang, F. Wu, Z. Liu, Y. Cui, L. Chen, Y. Chen, J. Energy Chem. 2021, 53, 63–68.
- 39Q. Fan, W. Su, S. Chen, T. Liu, W. Zhuang, R. Ma, X. Wen, Z. Luo, X. Guo, L. Hou, K. Moth-Poulsen, Y. Li, C. Yang, D. Yu, H. Yan, M. Zhang, E. Wang, Angew. Chem. Int. Ed. 2020, 59, 19835–19840; Angew. Chem. 2020, 132, 20007–20012.
- 40J. Wu, Y. Meng, X. Guo, L. Zhu, F. Liu, M. Zhang, J. Mater. Chem. A 2019, 7, 16190–16196.
- 41H. Yao, L.-K. Ma, H. Yu, J. Yu, P. C. Y. Chow, W. Xue, X. Zou, Y. Chen, J. Liang, L. Arunagiri, F. Gao, H. Sun, G. Zhang, W. Ma, H. Yan, Adv. Energ. Mater. 2020, 10, 2001408.
- 42Q. Fan, W. Su, S. Chen, W. Kim, X. Chen, B. Lee, T. Liu, U. A. Méndez-Romero, R. Ma, T. Yang, W. Zhuang, Y. Li, Y. Li, T.-S. Kim, L. Hou, C. Yang, H. Yan, D. Yu, E. Wang, Joule 2020, 4, 658–672.
- 43Y. Li, Z. Jia, Q. Zhang, Z. Wu, H. Qin, J. Yang, S. Wen, H. Y. Woo, W. Ma, R. Yang, J. Yuan, ACS Appl. Mater. Interfaces 2020, 12, 33028–33038.
- 44Q. Fan, R. Ma, T. Liu, W. Su, W. Peng, M. Zhang, Z. Wang, X. Wen, Z. Cong, Z. Luo, L. Hou, F. Liu, W. Zhu, D. Yu, H. Yan, E. Wang, Sol. RRL 2020, 4, 2000142.
- 45A. Tang, J. Li, B. Zhang, J. Peng, E. Zhou, ACS Macro Lett. 2020, 9, 706–712.
- 46J. Du, K. Hu, L. Meng, I. Angunawela, J. Zhang, S. Qin, A. Liebman-Pelaez, C. Zhu, Z. Zhang, H. Ade, Y. Li, Angew. Chem. Int. Ed. 2020, 59, 15181–15185; Angew. Chem. 2020, 132, 15293–15297.
- 47H. Bin, L. Gao, Z.-G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, M. Xiao, Y. Li, Nat. Commun. 2016, 7, 13651.
- 48L. Gao, Z.-G. Zhang, H. Bin, L. Xue, Y. Yang, C. Wang, F. Liu, T. P. Russell, Y. Li, Adv. Mater. 2016, 28, 8288–8295.
- 49
- 49aS. Li, C.-Z. Li, M. Shi, H. Chen, ACS Energy Lett. 2020, 5, 1554–1567;
- 49bK. Jiang, Q. Wei, J. Y. L. Lai, Z. Peng, H. K. Kim, J. Yuan, L. Ye, H. Ade, Y. Zou, H. Yan, Joule 2019, 3, 3020–3033;
- 49cH. Lai, Q. Zhao, Z. Chen, H. Chen, P. Chao, Y. Zhu, Y. Lang, N. Zhen, D. Mo, Y. Zhang, F. He, Joule 2020, 4, 688–700;
- 49dY. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.
- 50
- 50aJ. Wan, X. Xu, G. Zhang, Y. Li, K. Feng, Q. Peng, Energy Environ. Sci. 2017, 10, 1739–1745;
- 50bK. H. Park, Y. An, S. Jung, H. Park, C. Yang, Energy Environ. Sci. 2016, 9, 3464–3471;
- 50cD. Deng, Y. Zhang, J. Zhang, Z. Wang, L. Zhu, J. Fang, B. Xia, Z. Wang, K. Lu, W. Ma, Z. Wei, Nat. Commun. 2016, 7, 13740.
- 51
- 51aJ. Yuan, M. J. Ford, Y. Xu, Y. Zhang, G. C. Bazan, W. Ma, Adv. Energy Mater. 2018, 8, 1703291;
- 51bJ. Yuan, W. Guo, Y. Xia, M. J. Ford, F. Jin, D. Liu, H. Zhao, O. Inganäs, G. C. Bazan, W. Ma, Nano Energy 2017, 35, 251–262;
- 51cK. Zhang, R. Xia, B. Fan, X. Liu, Z. Wang, S. Dong, H.-L. Yip, L. Ying, F. Huang, Y. Cao, Adv. Mater. 2018, 30, 1803166.
- 52G. Ding, J. Yuan, F. Jin, Y. Zhang, L. Han, X. Ling, H. Zhao, W. Ma, Nano Energy 2017, 36, 356–365.
- 53G. Han, Y. Guo, X. Song, Y. Wang, Y. Yi, J. Mater. Chem. C 2017, 5, 4852–4857.
- 54J. Liu, S. Zeng, Z. Zhang, J. Peng, Q. Liang, J. Phys. Chem. Lett. 2020, 11, 2314–2321.
- 55Y. Xu, J. Yuan, S. Liang, J.-D. Chen, Y. Xia, B. W. Larson, Y. Wang, G. M. Su, Y. Zhang, C. Cui, M. Wang, H. Zhao, W. Ma, ACS Energy Lett. 2019, 4, 2277–2286.
- 56Q. Zhang, Z. Chen, W. Ma, Z. Xie, Y. Han, J. Mater. Chem. C 2019, 7, 12560–12571.
- 57
- 57aB. Fan, L. Ying, Z. Wang, B. He, X.-F. Jiang, F. Huang, Y. Cao, Energy Environ. Sci. 2017, 10, 1243–1251;
- 57bT. Earmme, Y.-J. Hwang, S. Subramaniyan, S. A. Jenekhe, Adv. Mater. 2014, 26, 6080–6085.
- 58R. Wang, C. Zhang, Q. Li, Z. Zhang, X. Wang, M. Xiao, J. Am. Chem. Soc. 2020, 142, 12751–12759.
- 59R. Wang, Y. Yao, C. Zhang, Y. Zhang, H. Bin, L. Xue, Z.-G. Zhang, X. Xie, H. Ma, X. Wang, Y. Li, M. Xiao, Nat. Commun. 2019, 10, 398.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.