CO2-Induced Spin-State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature
Dr. Manabu Nakaya
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorDr. Wataru Kosaka
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Hitoshi Miyasaka
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
Search for more papers by this authorYuki Komatsumaru
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorDr. Shogo Kawaguchi
Diffraction & Scattering Division Japan, Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 ( Japan
Search for more papers by this authorDr. Kunihisa Sugimoto
Diffraction & Scattering Division Japan, Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 ( Japan
Search for more papers by this authorDr. Yingjie Zhang
Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232 Australia
Search for more papers by this authorDr. Masaaki Nakamura
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorLeonard F. Lindoy
School of Chemistry, The University of Sydney, Sydney, NSW, 2006 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Shinya Hayami
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorDr. Manabu Nakaya
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorDr. Wataru Kosaka
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Hitoshi Miyasaka
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
Search for more papers by this authorYuki Komatsumaru
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorDr. Shogo Kawaguchi
Diffraction & Scattering Division Japan, Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 ( Japan
Search for more papers by this authorDr. Kunihisa Sugimoto
Diffraction & Scattering Division Japan, Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 ( Japan
Search for more papers by this authorDr. Yingjie Zhang
Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232 Australia
Search for more papers by this authorDr. Masaaki Nakamura
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorLeonard F. Lindoy
School of Chemistry, The University of Sydney, Sydney, NSW, 2006 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Shinya Hayami
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
Search for more papers by this authorAbstract
CO2-responsive spin-state conversion between high-spin (HS) and low-spin (LS) states at room temperature was achieved in a monomeric cobalt(II) complex. A neutral cobalt(II) complex, [CoII(COO-terpy)2]⋅4 H2O (1⋅4 H2O), stably formed cavities generated via π–π stacking motifs and hydrogen bond networks, resulting in the accommodation of four water molecules. Crystalline 1⋅4 H2O transformed to solvent-free 1 without loss of porosity by heating to 420 K. Compound 1 exhibited a selective CO2 adsorption via a gate-open type of the structural modification. Furthermore, the HS/LS transition temperature (T1/2) was able to be tuned by the CO2 pressure over a wide temperature range. Unlike 1 exhibits the HS state at 290 K, the CO2-accomodated form 1⊃CO2 (P
=110 kPa) was stabilized in the LS state at 290 K, probably caused by a chemical pressure effect by CO2 accommodation, which provides reversible spin-state conversion by introducing/evacuating CO2 gas into/from 1.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202003811-sup-0001-misc_information.pdf1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Acc. Chem. Res. 2016, 49, 483–493.
- 2E. Coronado, G. M. Espallargas, Chem. Soc. Rev. 2013, 42, 1525–1539.
- 3G. Mínguez Espallargas, E. Coronado, Chem. Soc. Rev. 2018, 47, 533–557.
- 4A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096.
- 5Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815–5840.
- 6W. Kosaka, Z. Liu, J. Zhang, Y. Sato, A. Hori, R. Matsuda, S. Kitagawa, H. Miyasaka, Nat. Commun. 2018, 9, 5420.
- 7J. Zhang, W. Kosaka, K. Sugimoto, H. Miyasaka, J. Am. Chem. Soc. 2018, 140, 5644–5652.
- 8J. Zhang, W. Kosaka, Y. Kitagawa, H. Miyasaka, Angew. Chem. Int. Ed. 2019, 58, 7351–7356; Angew. Chem. 2019, 131, 7429–7434.
- 9D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220–224.
- 10L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125.
- 11P. Gütlich, Y. Garcia, H. A. Goodwin, Chem. Soc. Rev. 2000, 29, 419–427.
- 12J. A. Real, A. B. Gaspar, M. C. Munoz, Dalton Trans. 2005, 2062–2079.
- 13A. Bousseksou, G. Molnár, G. Matouzenko, Eur. J. Inorg. Chem. 2004, 4353–4369.
- 14C. Bartual-Murgui, A. Akou, C. Thibault, G. Molnár, C. Vieu, L. Salmon, A. Bousseksou, J. Mater. Chem. C 2015, 3, 1277–1285.
- 15M. Ohba, K. Yoneda, G. Agusti, M. C. Munoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 4767–4771; Angew. Chem. 2009, 121, 4861–4865.
- 16S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 12106–12108.
- 17F. Shao, J. Li, J. P. Tong, J. Zhang, M. G. Chen, Z. Zheng, R. B. Huang, L. S. Zheng, J. Tao, Chem. Commun. 2013, 49, 10730–10732.
- 18J. Y. Ge, Z. Chen, L. Zhang, X. Liang, J. Su, M. Kurmoo, J. L. Zuo, Angew. Chem. Int. Ed. 2019, 58, 8789–8793; Angew. Chem. 2019, 131, 8881–8885.
- 19D. A. Reed, B. K. Keitz, J. Oktawiec, J. A. Mason, T. Runcevski, D. J. Xiao, L. E. Darago, V. Crocella, S. Bordiga, J. R. Long, Nature 2017, 550, 96–100.
- 20R. Ohtani, S. Hayami, Chem. Eur. J. 2017, 23, 2236–2248.
- 21Z.-P. Ni, J.-L. Liu, M. N. Hoque, W. Liu, J.-Y. Li, Y.-C. Chen, M.-L. Tong, Coord. Chem. Rev. 2017, 335, 28–43.
- 22G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762–1765.
- 23S. M. Neville, B. Moubaraki, K. S. Murray, C. J. Kepert, Angew. Chem. Int. Ed. 2007, 46, 2059–2062; Angew. Chem. 2007, 119, 2105–2108.
- 24S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, P. D. Southon, J. D. Cashion, J. F. Letard, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 2869–2876.
- 25F. J. Muñoz Lara, A. B. Gaspar, D. Aravena, E. Ruiz, M. C. Muñoz, M. Ohba, R. Ohtani, S. Kitagawa, J. A. Real, Chem. Commun. 2012, 48, 4686–4688.
- 26M. J. Murphy, K. A. Zenere, F. Ragon, P. D. Southon, C. J. Kepert, S. M. Neville, J. Am. Chem. Soc. 2017, 139, 1330–1335.
- 27K. A. Zenere, S. G. Duyker, E. Trzop, E. Collet, B. Chan, P. W. Doheny, C. J. Kepert, S. M. Neville, Chem. Sci. 2018, 9, 5623–5629.
- 28J. Y. Li, Z. Yan, Z. P. Ni, Z. M. Zhang, Y. C. Chen, W. Liu, M. L. Tong, Inorg. Chem. 2014, 53, 4039–4046.
- 29W. Liu, Y. Y. Peng, S. G. Wu, Y. C. Chen, M. N. Hoque, Z. P. Ni, X. M. Chen, M. L. Tong, Angew. Chem. Int. Ed. 2017, 56, 14982–14986; Angew. Chem. 2017, 129, 15178–15182.
- 30Y. Meng, Y.-J. Dong, Z. Yan, Y. C. Chen, X.-W. Song, Q.-W. Li, C.-L. Zhang, Z.-P. Ni, M. L. Tong, Cryst. Growth Des. 2018, 18, 5214–5219.
- 31F. J. Muñoz-Lara, A. B. Gaspar, M. C. Muñoz, M. Arai, S. Kitagawa, M. Ohba, J. A. Real, Chem. Eur. J. 2012, 18, 8013–8018.
- 32K. Yoshida, D. Akahoshi, T. Kawasaki, T. Saito, T. Kitazawa, Polyhedron 2013, 66, 252–256.
- 33R. Ohtani, K. Shimayama, A. Mishima, M. Ohba, R. Ishikawa, S. Kawata, M. Nakamura, L. F. Lindoy, S. Hayami, J. Mater. Chem. C 2015, 3, 7865–7869.
- 34R. J. Wei, J. Tao, R. B. Huang, L. S. Zheng, Inorg. Chem. 2011, 50, 8553–8564.
- 35R. G. Miller, S. Brooker, Chem. Sci. 2016, 7, 2501–2505.
- 36S. Rodríguez-Jiménez, H. L. Feltham, S. Brooker, Angew. Chem. Int. Ed. 2016, 55, 15067–15071; Angew. Chem. 2016, 128, 15291–15295.
- 37S. Rodriguez-Jimenez, S. Brooker, Inorg. Chem. 2019, 58, 8188–8197.
- 38M. B. Duriska, S. M. Neville, B. Moubaraki, J. D. Cashion, G. J. Halder, K. W. Chapman, C. Balde, J. F. Letard, K. S. Murray, C. J. Kepert, S. R. Batten, Angew. Chem. Int. Ed. 2009, 48, 2549–2552; Angew. Chem. 2009, 121, 2587–2590.
- 39J. S. Costa, S. Rodriguez-Jimenez, G. A. Craig, B. Barth, C. M. Beavers, S. J. Teat, G. Aromi, J. Am. Chem. Soc. 2014, 136, 3869–3874.
- 40K. Kagesawa, Y. Ichikawa, H. Iguchi, B. K. Breedlove, Z. Li, M. Yamashita, A. Okazawa, W. Kosaka, H. Miyasaka, Chem. Lett. 2019, 48, 1221–1224.
- 41R. J. Wei, Q. Huo, J. Tao, R. B. Huang, L. S. Zheng, Angew. Chem. Int. Ed. 2011, 50, 8940–8943; Angew. Chem. 2011, 123, 9102–9105.
- 42J. E. Clements, P. R. Airey, F. Ragon, V. Shang, C. J. Kepert, S. M. Neville, Inorg. Chem. 2018, 57, 14930–14938.
- 43R. A. Bilbeisi, S. Zarra, H. L. Feltham, G. N. Jameson, J. K. Clegg, S. Brooker, J. R. Nitschke, Chem. Eur. J. 2013, 19, 8058–8062.
- 44R. Ohtani, M. Arai, A. Hori, M. Takata, S. Kitao, M. Seto, S. Kitagawa, M. Ohba, J. Inorg. Organomet. Polym. 2013, 23, 104–110.
- 45X. Bao, H. J. Shepherd, L. Salmon, G. Molnar, M. L. Tong, A. Bousseksou, Angew. Chem. Int. Ed. 2013, 52, 1198–1202; Angew. Chem. 2013, 125, 1236–1240.
- 46J.-Y. Li, C.-T. He, Y.-C. Chen, Z.-M. Zhang, W. Liu, Z.-P. Ni, M. L. Tong, J. Mater. Chem. C 2015, 3, 7830–7835.
- 47A. J. McConnell, C. M. Aitchison, A. B. Grommet, J. R. Nitschke, J. Am. Chem. Soc. 2017, 139, 6294–6297.
- 48L. A. Piñeiro-López, F. J. Valverde-Muñoz, M. Seredyuk, M. C. Muñoz, M. Haukka, J. A. Real, Inorg. Chem. 2017, 56, 7038–7047.
- 49W. K. Han, H. X. Zhang, Y. Wang, W. Liu, X. Yan, T. Li, Z. G. Gu, Chem. Commun. 2018, 54, 12646–12649.
- 50R. Ohtani, K. Yoneda, S. Furukawa, N. Horike, S. Kitagawa, A. B. Gaspar, M. C. Munoz, J. A. Real, M. Ohba, J. Am. Chem. Soc. 2011, 133, 8600–8605.
- 51M. Darawsheh, L. A. Barrios, O. Roubeau, S. J. Teat, G. Aromi, Chem. Eur. J. 2016, 22, 8635–8645.
- 52P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder, K. W. Chapman, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 10998–11009.
- 53C. H. Pham, F. Paesani, Inorg. Chem. 2018, 57, 9839–9843.
- 54Z. Arcís-Castillo, F. J. Muñoz-Lara, M. C. Muñoz, D. Aravena, A. B. Gaspar, J. F. Sánchez-Royo, E. Ruiz, M. Ohba, R. Matsuda, S. Kitagawa, J. A. Real, Inorg. Chem. 2013, 52, 12777–12783.
- 55E. Coronado, M. Giménez-Marqués, G. M. Espallargas, F. Rey, I. J. Vitórica-Yrezábal, J. Am. Chem. Soc. 2013, 135, 15986–15989.
- 56J. W. Shin, A. R. Jeong, S. Jeoung, H. R. Moon, Y. Komatsumaru, S. Hayami, D. Moon, K. S. Min, Chem. Commun. 2018, 54, 4262–4265.
- 57D. A. Reed, D. J. Xiao, M. I. Gonzalez, L. E. Darago, Z. R. Herm, F. Grandjean, J. R. Long, J. Am. Chem. Soc. 2016, 138, 5594–5602.
- 58“Spin Crossover in Cobalt(II) Systems”: H. A. Goodwin in Spin Crossover in Transition Metal Compounds II, Topics in Current Chemistry, Vol. 234, Springer, Berlin, 2004, 23—47.
- 59J. Husson, J. Dehaudt, L. Guyard, Nat. Protoc. 2014, 9, 21–26.
- 60B. L. Schottel, H. T. Chifotides, K. R. Dunbar, Chem. Soc. Rev. 2008, 37, 68–83.
- 61M. Nakaya, R. Ohtani, J. W. Shin, M. Nakamura, L. F. Lindoy, S. Hayami, Dalton Trans. 2018, 47, 13809–13814.
- 62R. Numaguchi, H. Tanaka, S. Watanabe, M. T. Miyahara, J. Chem. Phys. 2013, 138, 054708.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.