Fluorinated Aromatic Diluent for High-Performance Lithium Metal Batteries
Dong-Joo Yoo
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
Search for more papers by this authorSungyun Yang
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Ki Jae Kim
Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jang Wook Choi
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
Search for more papers by this authorDong-Joo Yoo
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
Search for more papers by this authorSungyun Yang
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Ki Jae Kim
Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Jang Wook Choi
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
Search for more papers by this authorAbstract
In lithium metal batteries, electrolytes containing a high concentration of salts have demonstrated promising cyclability, but their practicality with respect to the cost of materials is yet to be proved. Here we report a fluorinated aromatic compound, namely 1,2-difluorobenzene, for use as a diluent solvent in the electrolyte to realize the “high-concentration effect”. The low energy level of the lowest unoccupied molecular orbital (LUMO), weak binding affinity for lithium ions, and high fluorine-donating power of 1,2-difluorobenzene jointly give rise to the high-concentration effect at a bulk salt concentration near 2 m, while modifying the composition of the solid-electrolyte-interphase (SEI) layer to be rich in lithium fluoride (LiF). The employment of triple salts to prevent corrosion of the aluminum current collector further improves cycling performance. This study offers a design principle for achieving a local high-concentration effect with reasonably low bulk concentrations of salts.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202003663-sup-0001-misc_information.pdf11.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 2014, 7, 513–537;
- 1bJ. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
- 2
- 2aX. Sun, X. Zhang, Q. Ma, X. Guan, W. Wang, J. Luo, Angew. Chem. Int. Ed. 2020, 59, 6665–6674; Angew. Chem. 2020, 132, 6730–6739;
- 2bJ. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180–186;
- 2cD. Lu, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin, J. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, P. Bhattacharya, J. Liu, J. Xiao, Adv. Energy Mater. 2015, 5, 1400993.
- 3
- 3aP. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Energy Environ. Sci. 2016, 9, 3221–3229;
- 3bM. Rosso, C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet, S. Lascaud, Electrochim. Acta 2006, 51, 5334–5340.
- 4
- 4aX. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J.-G. Zhang, J. Liu, Y. S. Meng, Nano Lett. 2017, 17, 7606–7612;
- 4bY. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 2017, 358, 506–510.
- 5
- 5aZ. Yu, D. G. Mackanic, W. Michaels, M. Lee, A. Pei, D. Feng, Q. Zhang, Y. Tsao, C. V. Amanchukwu, X. Yan, H. Wang, S. Chen, K. Liu, J. Kang, J. Qin, Y. Cui, Z. Bao, Joule 2019, 3, 2761–2776;
- 5bS. Liu, X. Ji, J. Yue, S. Hou, P. Wang, C. Cui, J. Chen, B. Shao, J. Li, F. Han, J. Tu, C. Wang, J. Am. Chem. Soc. 2020, 142, 2438–2447;
- 5cY. Zhao, X. He, X. Liu, Q. Han, P. Zhang, X. Song, Angew. Chem. Int. Ed. 2020, 59, 6397–6405; Angew. Chem. 2020, 132, 6459–6467;
- 5dY.-T. Weng, H.-W. Liu, A. Pei, F. Shi, H. Wang, C.-Y. Lin, S.-S. Huang, L.-Y. Su, J.-P. Hsu, C.-C. Fang, Y. Cui, N.-L. Wu, Nat. Commun. 2019, 10, 5824.
- 6
- 6aG. Li, Z. Liu, D. Wang, X. He, S. Liu, Y. Gao, A. AlZahrani, S. H. Kim, L. Q. Chen, D. Wang, Adv. Energy Mater. 2019, 9, 1900704;
- 6bD.-J. Yoo, A. Elabd, S. Choi, Y. Cho, J. Kim, S. J. Lee, S. H. Choi, T. w. Kwon, K. Char, K. J. Kim, A. Coskun, J. W. Choi, Adv. Mater. 2019, 31, 1901645;
- 6cD. Lin, Y. Liu, Z. Liang, H.-W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626–632;
- 6dM. Wan, S. Kang, L. Wang, H.-W. Lee, G. W. Zheng, Y. Cui, Y. Sun, Nat. Commun. 2020, 11, 829;
- 6eK. Lin, X. Qin, M. Liu, X. Xu, G. Liang, J. Wu, F. Kang, G. Chen, B. Li, Adv. Funct. Mater. 2019, 29, 1903229;
- 6fH. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q.-H. Yang, F. Kang, J. Lu, Adv. Energy Mater. 2018, 8, 1800266.
- 7
- 7aX. Q. Zhang, X. Chen, X. B. Cheng, B. Q. Li, X. Shen, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 5301–5305; Angew. Chem. 2018, 130, 5399–5403;
- 7bQ. Pang, X. Liang, A. Shyamsunder, L. F. Nazar, Joule 2017, 1, 871–886;
- 7cC. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 14055–14059; Angew. Chem. 2018, 130, 14251–14255;
- 7dD.-J. Yoo, K. J. Kim, J. W. Choi, Adv. Energy Mater. 2018, 8, 1702744;
- 7eD.-J. Yoo, S. Yang, Y. S. Yun, J. H. Choi, D. Yoo, K. J. Kim, J. W. Choi, Adv. Energy Mater. 2018, 8, 1802365;
- 7fX. Ren, Y. Zhang, M. H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, ACS Energy Lett. 2018, 3, 14–19.
- 8
- 8aJ. Duan, W. Wu, A. M. Nolan, T. Wang, J. Wen, C. Hu, Y. Mo, W. Luo, Y. Huang, Adv. Mater. 2019, 31, 1807243;
- 8bA. Li, X. Liao, H. Zhang, L. Shi, P. Wang, Q. Cheng, J. Borovilas, Z. Li, W. Huang, Z. Fu, M. Dontigny, K. Zaghib, K. Myers, X. Chuan, X. Chen, Y. Yang, Adv. Mater. 2020, 32, 1905517;
- 8cN. Wu, Y. R. Shi, S. Y. Lang, J. M. Zhou, J. Y. Liang, W. Wang, S. J. Tan, Y. X. Yin, R. Wen, Y. G. Guo, Angew. Chem. Int. Ed. 2019, 58, 18146–18149; Angew. Chem. 2019, 131, 18314–18317;
- 8dZ. Jiang, S. Wang, X. Chen, W. Yang, X. Yao, X. Hu, Q. Han, H. Wang, Adv. Mater. 2020, 32, 1906221.
- 9N. von Aspern, G. V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Angew. Chem. Int. Ed. 2019, 58, 15978–16000; Angew. Chem. 2019, 131, 16124–16147.
- 10M. He, R. Guo, G. M. Hobold, H. Gao, B. M. Gallant, Proc. Natl. Acad. Sci. USA 2020, 117, 73–79.
- 11
- 11aY. He, X. Ren, Y. Xu, M. H. Engelhard, X. Li, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, C. Wang, Nat. Nanotechnol. 2019, 14, 1042–1047;
- 11bX. Q. Zhang, T. Li, B. Q. Li, R. Zhang, P. Shi, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3252–3257; Angew. Chem. 2020, 132, 3278–3283.
- 12Y. Li, W. Huang, Y. Li, A. Pei, D. T. Boyle, Y. Cui, Joule 2018, 2, 2167–2177.
- 13X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chem 2018, 4, 174–185.
- 14S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B. D. Adams, C. Ma, J. Liu, J.-G. Zhang, W. Xu, Nat. Energy 2018, 3, 739–746.
- 15X. Ren, S. Chen, H. Lee, D. Mei, M. H. Engelhard, S. D. Burton, W. Zhao, J. Zheng, Q. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J.-G. Zhang, W. Xu, Chem 2018, 4, 1877–1892.
- 16
- 16aX. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy 2019, 4, 796–805;
- 16bY. Zheng, F. A. Soto, V. Ponce, J. M. Seminario, X. Cao, J.-G. Zhang, P. B. Balbuena, J. Mater. Chem. A 2019, 7, 25047–25055.
- 17
- 17aS. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102;
- 17bL. Yu, S. Chen, H. Lee, L. Zhang, M. H. Engelhard, Q. Li, S. Jiao, J. Liu, W. Xu, J.-G. Zhang, ACS Energy Lett. 2018, 3, 2059–2067.
- 18P. L. Coe, A. J. Waring, T. D. Yarwood, J. Chem. Soc. Perkin Trans. 1 1995, 2729–2737.
- 19
- 19aS. H. Kim, C. H. Kim, W. J. Choi, T. G. Lee, S. K. Cho, Y. S. Yang, J. H. Lee, S.-J. Lee, Sci. Rep. 2017, 7, 1451;
- 19bP. Gong, J. Wang, W. Sun, D. Wu, Z. Wang, Z. Fan, H. Wang, X. Han, S. Yang, Nanoscale 2014, 6, 3316–3324.
- 20L. Cheng, S. Jandhyala, G. Mordi, A. T. Lucero, J. Huang, A. Azcatl, R. Addou, R. M. Wallace, L. Colombo, J. Kim, ACS Appl. Mater. Interfaces 2016, 8, 5002–5008.
- 21Y. Gao, Z. Yan, J. L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. C. Li, H. Wang, S. H. Kim, T. E. Mallouk, D. Wang, Nat. Mater. 2019, 18, 384–389.
- 22
- 22aJ. M. Mallan, R. L. Bebb, Chem. Rev. 1969, 69, 693–755;
- 22bD. J. Ramón, M. Yus, Eur. J. Org. Chem. 2000, 225–237.
10.1002/(SICI)1099-0690(200001)2000:2<225::AID-EJOC225>3.0.CO;2-A CAS Web of Science® Google Scholar
- 23K. Kimura, J. Motomatsu, Y. Tominaga, J. Phys. Chem. C 2016, 120, 12385–12391.
- 24J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun. 2016, 7, 12032.
- 25P. Shi, H. Zheng, X. Liang, Y. Sun, S. Cheng, C. Chen, H. Xiang, Chem. Commun. 2018, 54, 4453–4456.
- 26J. Alvarado, M. A. Schroeder, T. P. Pollard, X. Wang, J. Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y. S. Meng, K. Xu, Energy Environ. Sci. 2019, 12, 780–794.
- 27J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.
- 28
- 28aW. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng, L. Qiao, Z. Zhu, Z. Lv, Y. Zhang, X. Ge, S. Xi, Z. Wang, Y. Du, X. Chen, J. Am. Chem. Soc. 2019, 141, 14038–14042;
- 28bZ. Zhu, Y. Tang, W. R. Leow, H. Xia, Z. Lv, J. Wei, X. Ge, S. Cao, Y. Zhang, W. Zhang, H. Zhang, S. Xi, Y. Du, X. Chen, Angew. Chem. Int. Ed. 2019, 58, 3521–3526; Angew. Chem. 2019, 131, 3559–3564.
- 29X. Shangguan, G. Jia, F. Li, Q. Wang, B. Bai, J. Electrochem. Soc. 2016, 163, A2797–A2802.
- 30W. Zhang, Y. Sun, H. Deng, J. Ma, Y. Zeng, Z. Zhu, Z. Lv, H. Xia, X. Ge, S. Cao, Y. Du, A. Cao, X. Chen, Adv. Mater. 2020, 32, 2000496.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.