A Biomimetic Nanoparticle to “Lure and Kill” Phospholipase A2
Qiangzhe Zhang
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorDr. Ronnie H. Fang
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorDr. Weiwei Gao
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorCorresponding Author
Dr. Liangfang Zhang
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorQiangzhe Zhang
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorDr. Ronnie H. Fang
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorDr. Weiwei Gao
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorCorresponding Author
Dr. Liangfang Zhang
Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
Search for more papers by this authorAbstract
Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a “lure and kill” mechanism designed for PLA2 inhibition (denoted “L&K-NP”). The L&K-NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to “lure” in-coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that “kills” PLA2 upon enzymatic attack. Both compounds are integrated into the L&K-NP structure, which voids toxicity associated with free molecules. In the study, L&K-NPs effectively inhibit PLA2-induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K-NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K-NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti-PLA2 approach.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202002782-sup-0001-misc_information.pdf351.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. A. Dennis, J. Cao, Y.-H. Hsu, V. Magrioti, G. Kokotos, Chem. Rev. 2011, 111, 6130.
- 2C. N. Birts, C. H. Barton, D. C. Wilton, Trends Biochem. Sci. 2010, 35, 28.
- 3J. E. Burke, E. A. Dennis, J. Lipid Res. 2009, 50, S237.
- 4M. Murakami, Y. Taketomi, H. Sato, K. Yamamoto, J. Biochem. 2011, 150, 233.
- 5C. C. Leslie, J. Lipid Res. 2015, 56, 1386.
- 6J. Balsinde, M. A. Balboa, P. A. Insel, E. A. Dennis, Annu. Rev. Pharmacol. Toxicol. 1999, 39, 175.
- 7R. C. Reid, Curr. Med. Chem. 2005, 12, 3011.
- 8M. G. Kokotou, D. Limnios, A. Nikolaou, A. Psarra, G. Kokotos, Expert Opin. Ther. Pat. 2017, 27, 217.
- 9V. Magrioti, G. Kokotos, Expert Opin. Ther. Pat. 2013, 23, 333.
- 10W. Y. Ong, T. Farooqui, G. Kokotos, A. A. Farooqui, ACS Chem. Neurosci. 2015, 6, 814.
- 11R. Gowda, S. S. Dinavahi, S. Iyer, S. Banerjee, R. I. Neves, C. R. Pameijer, G. P. Robertson, Nanomedicine 2018, 14, 863.
- 12J. Pardeike, C. Schmidt, I. Volz, R. H. Muller, Pharmazie 2011, 66, 357.
- 13M. S. Liu, C. H. Liu, G. Wu, Y. F. Zhou, Crit. Care Med. 2012, 40, 2132.
- 14J. O'Brien, S. H. Lee, S. Onogi, K. J. Shea, J. Am. Chem. Soc. 2016, 138, 16604.
- 15J. O'Brien, K. J. Shea, Acc. Chem. Res. 2016, 49, 1200.
- 16R. H. Fang, A. V. Kroll, W. Gao, L. Zhang, Adv. Mater. 2018, 30, 1706759.
- 17Z. Q. Pang, C. M. Hu, R. H. Fang, B. T. Luk, W. Gao, F. Wang, E. Chuluun, P. Angsantikul, S. Thamphiwatana, W. Y. Lu, X. G. Jiang, L. Zhang, ACS Nano 2015, 9, 6450.
- 18C. M. Hu, R. H. Fang, J. Copp, B. T. Luk, L. Zhang, Nat. Nanotechnol. 2013, 8, 336.
- 19J. A. Copp, R. H. Fang, B. T. Luk, C. M. Hu, W. Gao, K. Zhang, L. Zhang, Proc. Natl. Acad. Sci. USA 2014, 111, 13481.
- 20X. L. Wei, J. Gao, R. H. Fang, B. T. Luk, A. V. Kroll, D. Dehaini, J. R. Zhou, H. W. Kim, W. Gao, W. Y. Lu, L. Zhang, Biomaterials 2016, 111, 116.
- 21Q. Z. Zhang, D. Dehaini, Y. Zhang, J. L. Zhou, X. Y. Chen, L. Zhang, R. H. Fang, W. Gao, L. Zhang, Nat. Nanotechnol. 2018, 13, 1182.
- 22Y. Zhang, Y. J. Chen, C. Lo, J. Zhuang, P. Angsantikul, Q. Z. Zhang, X. L. Wei, Z. D. Zhou, M. Obonyo, R. H. Fang, W. Gao, L. Zhang, Angew. Chem. Int. Ed. 2019, 58, 11404; Angew. Chem. 2019, 131, 11526.
- 23Y. J. Chen, Z. Jia, J. Zhuang, J. H. Lee, L. C. Wang, R. H. Fang, W. Gao, L. Zhang, ACS Nano 2019, 13, 7209.
- 24C. M. Hu, L. Zhang, S. Aryal, C. Cheung, R. H. Fang, L. Zhang, Proc. Natl. Acad. Sci. USA 2011, 108, 10980.
- 25I. Mingarro, E. Perezpaya, C. Pinilla, J. R. Appel, R. A. Houghten, S. E. Blondelle, FEBS Lett. 1995, 372, 131.
- 26H. L. Gijs, N. Willemarck, F. Vanderhoydonc, N. A. Khan, J. Dehairs, R. Derua, E. Waelkens, Y. Taketomi, M. Murakami, P. Agostinis, W. Annaert, J. V. Swinnen, Mol. Biol. Cell 2015, 26, 2321.
- 27J. Y. Miao, K. Kaji, H. Hayashi, S. Araki, J. Biochem. 1997, 121, 612.
- 28Y. Chen, M. Chen, Y. Zhang, J. H. Lee, T. Escajadillo, H. Gong, R. Fang, W. Gao, V. Nizet, L. Zhang, Adv. Healthcare Mater. 2018, 7, 1701366.
- 29M. L. Fernández, P. Y. Quartino, R. Arce-Bejarano, J. Fernández, L. F. Camacho, J. M. Gutiérrez, D. Kuemmel, G. Fidelio, B. Lomonte, Toxicol. Lett. 2018, 286, 39.
- 30X. Zhou, X. Cao, H. Tu, Z. R. Zhang, L. Deng, Mol. Pharm. 2019, 16, 1397.
- 31S. Thamphiwatana, P. Angsantikul, T. Escajadillo, Q. Z. Zhang, J. Olson, B. T. Luk, S. Zhang, R. H. Fang, W. Gao, V. Nizet, L. Zhang, Proc. Natl. Acad. Sci. USA 2017, 114, 11488.
- 32Z. Ren, H. Li, M. Zhang, Y. Zhao, X. Fang, X. Li, W. Chen, H. Zhang, Y. Wang, L.-L. Pan, J. Sun, Front. Immunol. 2018, 9, 2513.
- 33Y. Zhang, J. H. Zhang, W. S. Chen, P. Angsantikul, K. A. Spiekermann, R. H. Fang, W. Gao, L. Zhang, J. Controlled Release 2017, 263, 185.
- 34J. H. Zhang, W. Gao, R. H. Fang, A. J. Dong, L. Zhang, Small 2015, 11, 4309.
- 35W. Gao, C. M. Hu, R. H. Fang, B. T. Luk, J. Su, L. Zhang, Adv. Mater. 2013, 25, 3549.
- 36L. Y. T. Chou, K. Ming, W. C. W. Chan, Chem. Soc. Rev. 2011, 40, 233.
- 37A. F. Radovic-Moreno, T. K. Lu, V. A. Puscasu, C. J. Yoon, R. Langer, O. C. Farokhzad, ACS Nano 2012, 6, 4279.
- 38N. Kamaly, B. Yameen, J. Wu, O. C. Farokhzad, Chem. Rev. 2016, 116, 2602.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.