A Light-Responsive Metal–Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity
Dr. Hong-Qing Liang
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorDr. Yi Guo
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorYanshu Shi
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorCorresponding Author
Prof. Xinsheng Peng
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Bin Liang
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorDr. Hong-Qing Liang
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorDr. Yi Guo
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorYanshu Shi
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorCorresponding Author
Prof. Xinsheng Peng
State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Bin Liang
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
Search for more papers by this authorAbstract
Mimicking biological proton pumps to achieve stimuli-responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio-electronic devices. Now, dynamic light-responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF-8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible-light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote-controllable chemical sensors or proton-conducting field-effect transistors.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202002389-sup-0001-misc_information.pdf1.4 MB | Supplementary |
ange202002389-sup-0001-Movie.avi6.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Y. Chow, X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, G. M. Belfort, Y. Lin, P. E. Monahan, E. S. Boyden, Nature 2010, 463, 98–102;
- 1bK. Inoue, T. Tsukamoto, K. Shimono, Y. Suzuki, S. Miyauchi, S. Hayashi, H. Kandori, Y. Sudo, J. Am. Chem. Soc. 2015, 137, 3291–3299;
- 1cK. Inoue, S. Ito, Y. Kato, Y. Nomura, M. Shibata, T. Uchihashi, S. P. Tsunoda, H. Kandori, Nat. Commun. 2016, 7, 13415;
- 1dD. Harder, S. Hirschi, Z. Ucurum, R. Goers, W. Meier, D. J. Müller, D. Fotiadis, Angew. Chem. Int. Ed. 2016, 55, 8846–8849; Angew. Chem. 2016, 128, 8992–8995;
- 1eK. Kanehara, S. Yoshizawa, T. Tsukamoto, Y. Sudo, Sci. Rep. 2017, 7, 44427.
- 2R. H. Lozier, R. A. Bogomolni, W. Stoeckenius, Biophys. J. 1975, 15, 955–962.
- 3
- 3aL. Wen, X. Hou, Y. Tian, J. Zhai, L. Jiang, Adv. Funct. Mater. 2010, 20, 2636–2642;
- 3bL. Kuang, D. A. Fernandes, M. O'Halloran, W. Zheng, Y. Jiang, V. Ladizhansky, L. S. Brown, H. Liang, ACS Nano 2014, 8, 537–545;
- 3cX. Xie, G. A. Crespo, G. Mistlberger, E. Bakker, Nat. Chem. 2014, 6, 202–207;
- 3dQ. Zhang, Z. Liu, K. Wang, J. Zhai, Adv. Funct. Mater. 2015, 25, 2091–2098.
- 4
- 4aW. Guo, Y. Tian, L. Jiang, Acc. Chem. Res. 2013, 46, 2834–2846;
- 4bS. Haghighat, S. Ostresh, J. M. Dawlaty, J. Phys. Chem. B 2016, 120, 1002–1007;
- 4cH. Chun, T. D. Chung, Annu. Rev. Anal. Chem. 2015, 8, 441–462.
- 5H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 6
- 6aN. Stock, S. Biswas, Chem. Rev. 2012, 112, 933–969;
- 6bG. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. 2018, 30, 1800702;
- 6cB. Van De Voorde, B. Bueken, J. Denayerb, D. De Vos, Chem. Soc. Rev. 2014, 43, 5766–5788;
- 6dG. K. H. Shimizu, J. M. Taylor, S. Kim, Science 2013, 341, 354–355.
- 7
- 7aM. Yoon, K. Suh, S. Natarajan, K. Kim, Angew. Chem. Int. Ed. 2013, 52, 2688–2700; Angew. Chem. 2013, 125, 2752–2764;
- 7bJ. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan, G. K. H. Shimizu, J. Am. Chem. Soc. 2010, 132, 14055–14057;
- 7cY. Guo, Z. Jiang, W. Ying, L. Chen, Y. Liu, X. Wang, Z.-J. Jiang, B. Chen, X. Peng, Adv. Mater. 2018, 30, 1705155;
- 7dP. Ramaswamy, N. E. Wong, G. K. H. Shimizu, Chem. Soc. Rev. 2014, 43, 5913–5932;
- 7eY. Ye, W. Guo, L. Wang, Z. Li, Z. Song, J. Chen, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2017, 139, 15604–15607.
- 8S. S. Nagarkar, S. Horike, T. Itakura, B. L. Ouay, A. Demessence, M. Tsujimoto, S. Kitagawa, Angew. Chem. Int. Ed. 2017, 56, 4976–4981; Angew. Chem. 2017, 129, 5058–5063.
- 9K. Müller, J. Helfferich, F. Zhao, R. Verma, A. B. Kanj, V. Meded, D. Bléger, W. Wenzel, L. Heinke, Adv. Mater. 2018, 30, 1706551.
- 10A. B. Kanj, A. Chandresh, A. Gerwien, S. Grosjean, S. Bräse, Y. Wang, H. Dube, L. Heinke, Chem. Sci. 2020, 11, 1404–1410.
- 11
- 11aY. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Angew. Chem. Int. Ed. 2016, 55, 15120–15124; Angew. Chem. 2016, 128, 15344–15348;
- 11bY. Mao, J. Li, W. Cao, Y. Ying, P. Hu, Y. Liu, L. Sun, H. Wang, C. Jin, X. Peng, Nat. Commun. 2014, 5, 5532;
- 11cY. Liu, G. Li, Z. Chen, X. Peng, J. Mater. Chem. A 2017, 5, 9775–9784;
- 11dY. Liu, G. Li, J. Fu, Z. Chen, X. Peng, Angew. Chem. Int. Ed. 2017, 56, 6176–6180; Angew. Chem. 2017, 129, 6272–6276.
- 12X. Peng, J. Jin, N. Kobayashi, W. Schmitt, I. Ichinose, Chem. Commun. 2008, 1904–1906.
- 13L. Florea, A. Hennart, D. Diamond, F. Benito-Lopez, Sens. Actuators B 2012, 175, 92–99.
- 14
- 14aA. Knebel, L. Sundermann, A. Mohmeyer, I. Strauß, S. Friebe, P. Behrens, J. Caro, Chem. Mater. 2017, 29, 3111–3117;
- 14bL. Gao, C.-Y. V. Li, K.-Y. Chan, Chem. Mater. 2015, 27, 3601–3608.
- 15
- 15aF. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang, H. Wu, W. Zhou, J.-R. Li, B. Chen, Nat. Energy 2017, 2, 877–883;
- 15bH. Wu, F. Yang, X.-L. Lv, B. Wang, Y.-Z. Zhang, M.-J. Zhao, J.-R. Li, J. Mater. Chem. A 2017, 5, 14525–14529.
- 16M. Sadakiyo, T. Yamada, H. Kitagawa, ChemPlusChem 2016, 81, 691–701.
- 17
- 17aZ. Wang, A. Knebel, S. Grosjean, D. Wagner, S. Bräse, C. Wöll, J. Caro, L. Heinke, Nat. Commun. 2016, 7, 13872;
- 17bS. Castellanos, A. Goulet-Hanssens, F. L. Zhao, A. Dikhtiarenko, A. Pustovarenko, S. Hecht, J. Gascon, F. Kapteijn, D. Bléger, Chem. Eur. J. 2016, 22, 746–752;>
- 17cK. Müller, A. Knebel, F. Zhao, D. Bléger, J. Caro, L. Heinke, Chem. Eur. J. 2017, 23, 5434–5438;
- 17dJ. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. F. Stoddart, O. M. Yaghi, Chem. Sci. 2013, 4, 2858–2864.
- 18M. Lozada-Hidalgo, S. Zhang, S. Hu, V. G. Kravets, F. J. Rodriguez, A. Berdyugin, A. Grigorenko, A. K. Geim, Nat. Nanotechnol. 2018, 13, 300–303.
- 19R. Klajn, Chem. Soc. Rev. 2014, 43, 148–184.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.