A Long Cycle-Life High-Voltage Spinel Lithium-Ion Battery Electrode Achieved by Site-Selective Doping
Gemeng Liang
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorZhibin Wu
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorDr. Christophe Didier
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Sydney, NSW, Australia
Search for more papers by this authorDr. Wenchao Zhang
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorDr. Jing Cuan
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorProf. Baohua Li
Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 P. R. China
Search for more papers by this authorKuan-Yu Ko
Industrial Technology Research Institute, Hsinchu, Taiwan) (China
Search for more papers by this authorPo-Yang Hung
Industrial Technology Research Institute, Hsinchu, Taiwan) (China
Search for more papers by this authorDr. Cheng-Zhang Lu
Industrial Technology Research Institute, Hsinchu, Taiwan) (China
Search for more papers by this authorDr. Yuanzhen Chen
School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorDr. Grzegorz Leniec
Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Al. Piastów, 17, 70-310 Szczecin, Poland
Search for more papers by this authorDr. Sławomir Maksymilian Kaczmarek
Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Al. Piastów, 17, 70-310 Szczecin, Poland
Search for more papers by this authorDr. Bernt Johannessen
Australian Synchrotron, Australian Nuclear Science and Technology Organization, 800 Blackburn Road, Clayton, Victoria, 3168 Australia
Search for more papers by this authorDr. Lars Thomsen
Australian Synchrotron, Australian Nuclear Science and Technology Organization, 800 Blackburn Road, Clayton, Victoria, 3168 Australia
Search for more papers by this authorDr. Vanessa K. Peterson
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Sydney, NSW, Australia
Search for more papers by this authorCorresponding Author
Dr. Wei Kong Pang
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorCorresponding Author
Prof. Zaiping Guo
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorGemeng Liang
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorZhibin Wu
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorDr. Christophe Didier
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Sydney, NSW, Australia
Search for more papers by this authorDr. Wenchao Zhang
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorDr. Jing Cuan
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorProf. Baohua Li
Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 P. R. China
Search for more papers by this authorKuan-Yu Ko
Industrial Technology Research Institute, Hsinchu, Taiwan) (China
Search for more papers by this authorPo-Yang Hung
Industrial Technology Research Institute, Hsinchu, Taiwan) (China
Search for more papers by this authorDr. Cheng-Zhang Lu
Industrial Technology Research Institute, Hsinchu, Taiwan) (China
Search for more papers by this authorDr. Yuanzhen Chen
School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorDr. Grzegorz Leniec
Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Al. Piastów, 17, 70-310 Szczecin, Poland
Search for more papers by this authorDr. Sławomir Maksymilian Kaczmarek
Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Al. Piastów, 17, 70-310 Szczecin, Poland
Search for more papers by this authorDr. Bernt Johannessen
Australian Synchrotron, Australian Nuclear Science and Technology Organization, 800 Blackburn Road, Clayton, Victoria, 3168 Australia
Search for more papers by this authorDr. Lars Thomsen
Australian Synchrotron, Australian Nuclear Science and Technology Organization, 800 Blackburn Road, Clayton, Victoria, 3168 Australia
Search for more papers by this authorDr. Vanessa K. Peterson
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Sydney, NSW, Australia
Search for more papers by this authorCorresponding Author
Dr. Wei Kong Pang
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorCorresponding Author
Prof. Zaiping Guo
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia
Search for more papers by this authorAbstract
Spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode candidate for the next-generation high energy-density lithium-ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site-selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd
m structure. This site-selective doping not only suppresses unfavorable two-phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg-doped LNMOs exhibit extraordinarily stable electrochemical performance in both half-cells and prototype full-batteries with novel TiNb2O7 counter-electrodes. This work pioneers an atomic-doping engineering strategy for electrode materials that could be extended to other energy materials to create high-performance devices.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202001454-sup-0001-misc_information.pdf1.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935;
- 1bJ. B. Goodenough, Acc. Chem. Res. 2013, 46, 1053–1061;
- 1cK. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 2006, 311, 977–980.
- 2
- 2aJ. Y. Piao, L. Gu, Z. Wei, J. Ma, J. Wu, W. Yang, Y. Gong, Y. G. Sun, S. Y. Duan, X. S. Tao, D. S. Bin, A. M. Cao, L. J. Wan, J. Am. Chem. Soc. 2019, 141, 4900–4907;
- 2bJ. Ma, P. Hu, G. Cui, L. Chen, Chem. Mater. 2016, 28, 3578–3606.
- 3
- 3aT.-F. Yi, J. Mei, Y.-R. Zhu, J. Power Sources 2016, 316, 85–105;
- 3bA. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 2014, 7, 1339.
- 4
- 4aJ. Wang, P. Nie, G. Xu, J. Jiang, Y. Wu, R. Fu, H. Dou, X. Zhang, Adv. Funct. Mater. 2018, 28, 1704808;
- 4bJ.-J. Shiu, W. K. Pang, S.-h. Wu, J. Power Sources 2013, 244, 35–42;
- 4cM.-H. Liu, H.-T. Huang, C.-M. Lin, J.-M. Chen, S.-C. Liao, Electrochim. Acta 2014, 120, 133–139.
- 5M. Lin, L. Ben, Y. Sun, H. Wang, Z. Yang, L. Gu, X. Yu, X.-Q. Yang, H. Zhao, R. Yu, M. Armand, X. Huang, Chem. Mater. 2015, 27, 292–303.
- 6B. Xiao, H. Liu, J. Liu, Q. Sun, B. Wang, K. Kaliyappan, Y. Zhao, M. N. Banis, Y. Liu, R. Li, T. K. Sham, G. A. Botton, M. Cai, X. Sun, Adv. Mater. 2017, 29, 1703764.
- 7J.-Y. Piao, Y.-G. Sun, S.-Y. Duan, A.-M. Cao, X.-L. Wang, R.-J. Xiao, X.-Q. Yu, Y. Gong, L. Gu, Y. Li, Z.-J. Liu, Z.-Q. Peng, R.-M. Qiao, W.-L. Yang, X.-Q. Yang, J. B. Goodenough, L.-J. Wan, Chem 2018, 4, 1685–1695.
- 8R. D. Shannon, Acta Crystallogr. 1976, 32, 751–767.
- 9
- 9aU. Lafont, C. Locati, W. J. H. Borghols, A. Łasińska, J. Dygas, A. V. Chadwick, E. M. Kelder, J. Power Sources 2009, 189, 179–184;
- 9bF. Ooms, E. Kelder, J. Schoonman, M. Wagemaker, F. Mulder, Solid State Ionics 2002, 152, 143–153;
- 9cR. Alcántara, M. Jaraba, P. Lavela, J. Tirado, E. Zhecheva, R. Stoyanova, Chem. Mater. 2004, 16, 1573–1579;
- 9dC. Locati, U. Lafont, L. Simonin, F. Ooms, E. M. Kelder, J. Power Sources 2007, 174, 847–851;
- 9eM. Wagemaker, F. G. Ooms, E. M. Kelder, J. Schoonman, F. M. Mulder, J. Am. Chem. Soc. 2004, 126, 13526–13533.
- 10D. Buchholz, C. Vaalma, L. G. Chagas, S. Passerini, J. Power Sources 2015, 282, 581–585.
- 11
- 11aH. Liu, R. Kloepsch, J. Wang, M. Winter, J. Li, J. Power Sources 2015, 300, 430–437;
- 11bH. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, ACS Appl. Mater. Interfaces 2016, 8, 4661–4675.
- 12
- 12aY. Liu, Z. Lu, C. Deng, W. Xu, T. Hu, B. Yan, G. Yang, ChemElectroChem 2017, 4, 1205–1213;
- 12bB. Xiao, J. Liu, Q. Sun, B. Wang, M. N. Banis, D. Zhao, Z. Wang, R. Li, X. Cui, T. K. Sham, X. Sun, Adv. Sci. 2015, 2, 1500022.
- 13B. Zheng, S. Wu, X. Yang, M. Jia, W. Zhang, G. Liu, ACS Appl. Mater. Interfaces 2016, 8, 26683–26689.
- 14C. H. Van Oversteeg, H. Q. Doan, F. M. de Groot, T. Cuk, Chem. Soc. Rev. 2017, 46, 102–125.
- 15W. Bronger, H. Bade, W. Klemm, Z. Anorg. Allg. Chem. 1964, 333, 188–200.
- 16H. Berg, J. O. Thomas, W. Liu, G. C. Farrington, Solid State Ionics 1998, 112, 165–168.
- 17W. Liu, Q. Shi, Q. Qu, T. Gao, G. Zhu, J. Shao, H. Zheng, J. Mater. Chem. A 2017, 5, 145–154.
- 18
- 18aJ. Wang, P. Nie, J. Jiang, Y. Wu, R. Fu, G. Xu, Y. Zhang, H. Dou, X. Zhang, ChemElectroChem 2018, 5, 1212–1218;
- 18bJ.-C. Fang, Y.-F. Xu, G.-L. Xu, S.-Y. Shen, J.-T. Li, L. Huang, S.-G. Sun, J. Power Sources 2016, 304, 15–23;
- 18cH. B. Lin, Y. M. Zhang, J. N. Hu, Y. T. Wang, L. D. Xing, M. Q. Xu, X. P. Li, W. S. Li, J. Power Sources 2014, 257, 37–44;
- 18dX. Fang, N. Ding, X. Y. Feng, Y. Lu, C. H. Chen, Electrochim. Acta 2009, 54, 7471–7475;
- 18eJ. M. Lim, R. G. Oh, D. Kim, W. Cho, K. Cho, M. Cho, M. S. Park, ChemSusChem 2016, 9, 2967–2973;
- 18fJ. Chong, S. Xun, X. Song, G. Liu, V. S. Battaglia, Nano Energy 2013, 2, 283–293;
- 18gY. Xue, Z.-B. Wang, L.-L. Zheng, F.-D. Yu, B.-S. Liu, Y.-X. Zhou, ChemistrySelect 2017, 2, 4325–4331;
- 18hD. Lu, L. Yuan, Z. Chen, R. Zeng, Y. Cai, J. Alloys Compd. 2018, 730, 509–515.
- 19
- 19aW. K. Pang, N. Sharma, V. K. Peterson, J.-J. Shiu, S.-h. Wu, J. Power Sources 2014, 246, 464–472;
- 19bH. Liu, G. Liang, C. Gao, S. Bi, Q. Chen, Y. Xie, S. Fan, L. Cao, W. K. Pang, Z. Guo, Nano Energy 2019, 66, 104100.
- 20V. K. Peterson, J. E. Auckett, W. K. Pang, IUCrJ 2017, 4, 540–554.
- 21A. Singer, A. Ulvestad, H. M. Cho, J. W. Kim, J. Maser, R. Harder, Y. S. Meng, O. G. Shpyrko, Nano Lett. 2014, 14, 5295–5300.
- 22H. Yu, H. Lan, L. Yan, S. Qian, X. Cheng, H. Zhu, N. Long, M. Shui, J. Shu, Nano Energy 2017, 38, 109–117.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.