Magnetothermal Microfluidic-Assisted Hierarchical Microfibers for Ultrahigh-Energy-Density Supercapacitors
Hui Qiu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorHengyang Cheng
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorJinku Meng
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guan Wu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorProf. Su Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorHui Qiu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorHengyang Cheng
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorJinku Meng
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guan Wu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorProf. Su Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009 P. R. China
Search for more papers by this authorAbstract
Chemical architectures with an ordered porous backbone and high charge transfer are significant for fiber-shaped supercapacitors (FSCs). However, owing to the sluggish ion kinetic diffusion and storage in compacted fibers, achieving high energy density remains a challenge. An innovative magnetothermal microfluidic method is now proposed to design hierarchical carbon polyhedrons/holey graphene (CP/HG) core–shell microfibers. Owing to highly magnetothermal etching and microfluidic reactions, the CP/HG fibers maintain an open inner-linked ionic pathway, large specific surface area, and moderate nitrogen active site, facilitating more rapid ionic dynamic transportation and accommodation. The CP/HG FSCs show an ultrahigh energy density (335.8 μWh cm−2) and large areal capacitance (2760 mF cm−2). A self-powered endurance application with the integration of chip-based FSCs is designed to profoundly drive the durable motions of an electric car and walking robot.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202000951-sup-0001-misc_information.pdf2.1 MB | Supplementary |
ange202000951-sup-0001-Movie_S1.avi2.9 MB | Supplementary |
ange202000951-sup-0001-Movie_S2.avi4.4 MB | Supplementary |
ange202000951-sup-0001-Movie_S3.avi3.1 MB | Supplementary |
ange202000951-sup-0001-Movie_S4.avi3.5 MB | Supplementary |
ange202000951-sup-0001-Movie_S5.avi3 MB | Supplementary |
ange202000951-sup-0001-Movie_S6.mp44 MB | Supplementary |
ange202000951-sup-0001-Movie_S7.avi1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Zhang, W. Bai, X. Cheng, J. Ren, W. Weng, P. Chen, X. Fang, Z. Zhang, H. Peng, Angew. Chem. Int. Ed. 2014, 53, 14564–14568; Angew. Chem. 2014, 126, 14792–14796;
- 1bA. Sumboja, J. Liu, W. G. Zheng, Y. Zong, H. Zhang, Z. Liu, Chem. Soc. Rev. 2018, 47, 5919–5945;
- 1cJ. Shang, Q. Huang, L. Wang, Y. Yang, P. Li, Z. Zheng, Adv. Mater. 2019, 31, 1907088;
- 1dG. Wu, X. Wu, Y. Xu, H. Cheng, J. Meng, Q. Yu, X. Shi, K. Zhang, W. Chen, S. Chen, Adv. Mater. 2019, 31, 1806492;
- 1eX. Y. Du, Q. Li, G. Wu, S. Chen, Adv. Mater. 2019, 31, 1903733.
- 2
- 2aT. Chen, R. Hao, H. Peng, L. Dai, Angew. Chem. Int. Ed. 2015, 54, 618–622; Angew. Chem. 2015, 127, 628–632;
- 2bJ. L. Wang, M. Hassan, J. W. Liu, S. H. Yu, Adv. Mater. 2018, 30, 1803430;
- 2cQ. Li, J. Wang, C. Liu, S. M. Fakhrhoseini, D. Liu, L. Zhang, W. Lei, M. Naebe, Adv. Sci. 2019, 6, 1900762;
- 2dY. Zhou, C. H. Wang, W. Lu, L. Dai, Adv. Mater. 2019, 31, 1902779.
- 3
- 3aH. Cheng, J. Meng, G. Wu, S. Chen, Angew. Chem. Int. Ed. 2019, 58, 17465–17473; Angew. Chem. 2019, 131, 17626–17634;
- 3bX. Wu, Y. Xu, Y. Hu, G. Wu, H. Cheng, Q. Yu, K. Zhang, W. Chen, S. Chen, Nat. Commun. 2018, 9, 4573;
- 3cV. Rajendran, A. M. V. Mohan, M. Jayaraman, T. Nakagawa, Nano Energy 2019, 65, 104055.
- 4
- 4aY. Zhang, Y. Zhao, X. Cheng, W. Weng, J. Ren, X. Fang, Y. Jiang, P. Chen, Z. Zhang, Y. Wang, H. Peng, Angew. Chem. Int. Ed. 2015, 54, 11177–11182; Angew. Chem. 2015, 127, 11329–11334;
- 4bC. J. Zhang, L. McKeon, M. P. Kremer, S. H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C. O. Coileain, N. McEvoy, H. C. Nerl, B. Anasori, J. N. Coleman, Y. Gogotsi, V. Nicolosi, Nat. Commun. 2019, 10, 1795;
- 4cQ. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H. N. Alshareef, Adv. Energy Mater. 2018, 8, 1703043.
- 5L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Nat. Commun. 2014, 5, 3754.
- 6Y. Li, K. Sheng, W. Yuan, G. Shi, Chem. Commun. 2013, 49, 291–293.
- 7
- 7aM. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu, Z. L. Wang, Adv. Funct. Mater. 2019, 29, 1806298;
- 7bY. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 2019, 29, 1809004.
- 8W. Zhang, S. Wei, Y. Wu, Y. L. Wang, M. Zhang, D. Roy, H. Wang, J. Yuan, Q. Zhao, ACS Nano 2019, 13, 10261–10271.
- 9G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, H. Peng, Adv. Mater. 2016, 28, 3646–3652.
- 10Q. Li, H. Cheng, X. Wu, C.-F. Wang, G. Wu, S. Chen, J. Mater. Chem. A 2018, 6, 14112–14119.
- 11Z. Pan, J. Yang, Q. Zhang, M. Liu, Y. Hu, Z. Kou, N. Liu, X. Yang, X. Ding, H. Chen, J. Li, K. Zhang, Y. Qiu, Q. Li, J. Wang, Y. Zhang, Adv. Energy Mater. 2019, 9, 1802753.
- 12J. Meng, G. Wu, X. Wu, H. Cheng, Z. Xu, S. Chen, Adv. Sci. 2020, 7, 1901931.
- 13
- 13aG. Sun, J. Liu, X. Zhang, X. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Angew. Chem. Int. Ed. 2014, 53, 12576–12580; Angew. Chem. 2014, 126, 12784–12788;
- 13bH. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Science 2017, 356, 599–604.
- 14
- 14aC. R. Chen, H. Qin, H. P. Cong, S. H. Yu, Adv. Mater. 2019, 31, 1900573;
- 14bX. Wu, G. Wu, P. Tan, H. Cheng, R. Hong, F. Wang, S. Chen, J. Mater. Chem. A 2018, 6, 8940–8946.
- 15
- 15aZ.-S. Wu, Y.-Z. Tan, S. Zheng, S. Wang, K. Parvez, J. Qin, X. Shi, C. Sun, X. Bao, X. Feng, K. Muellen, J. Am. Chem. Soc. 2017, 139, 4506–4512;
- 15bZ. Xiang, D. Cao, L. Huang, J. Shui, M. Wang, L. Dai, Adv. Mater. 2014, 26, 3315–3320;
- 15cJ. Balamurugan, C. Li, V. Aravindan, N. H. Kim, J. H. Lee, Adv. Funct. Mater. 2018, 28, 1803287;
- 15dC. Zhan, P. Zhang, S. Dai, D.-e. Jiang, ACS Energy Lett. 2016, 1, 1241–1246.
- 16F. Zhou, H. Huang, C. Xiao, S. Zheng, X. Shi, J. Qin, Q. Fu, X. Bao, X. Feng, K. Muellen, Z.-S. Wu, J. Am. Chem. Soc. 2018, 140, 8198–8205.
- 17G. Wu, P. Tan, X. Wu, L. Peng, H. Cheng, C.-F. Wang, W. Chen, Z. Yu, S. Chen, Adv. Funct. Mater. 2017, 27, 1702493.
- 18Z. S. Wu, K. Parvez, S. Li, S. Yang, Z. Liu, S. Liu, X. Feng, K. Mullen, Adv. Mater. 2015, 27, 4054–4061.
- 19X. Li, C. Hao, B. Tang, Y. Wang, M. Liu, Y. Wang, Y. Zhu, C. Lu, Z. Tang, Nanoscale 2017, 9, 2178–2187.
- 20W. Yang, J. Yang, J. J. Byun, F. P. Moissinac, J. Xu, S. J. Haigh, M. Domingos, M. A. Bissett, R. A. W. Dryfe, S. Barg, Adv. Mater. 2019, 31, 1902725.
- 21K. Hu, J. Sun, Z. Guo, P. Wang, Q. Chen, M. Ma, N. Gu, Adv. Mater. 2015, 27, 2507–2514.
- 22O. Gökçe, S. Castonguay, Y. Temiz, T. Gervais, E. Delamarche, Nature 2019, 574, 228–232.
- 23F. Su, X. Lv, M. Miao, Small 2015, 11, 854–861.
- 24X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z. L. Wang, Adv. Mater. 2016, 28, 98–105.
- 25J. Du, Z. Wang, J. Yu, S. Ullah, B. Yang, C. Li, N. Zhao, B. Fei, C. Zhu, J. Xu, Adv. Funct. Mater. 2018, 28, 1707351.
- 26L. Dong, C. Xu, Y. Li, C. Wu, B. Jiang, Q. Yang, E. Zhou, F. Kang, Q. H. Yang, Adv. Mater. 2016, 28, 1675–1681.
- 27D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nanotechnol. 2014, 9, 555–562.
- 28Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang, X. Duan, Nat. Commun. 2014, 5, 4554.
- 29
- 29aL. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, J. Am. Chem. Soc. 2015, 137, 4920–4923;
- 29bJ. Troyano, A. Carne-Sanchez, C. Avci, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2019, 48, 5534–5546.
- 30C. Wang, Y. Li, X. He, Y. Ding, Q. Peng, W. Zhao, E. Shi, S. Wu, A. Cao, Nanoscale 2015, 7, 7550–7558.
- 31D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220–224.
- 32H. Liu, Y. Zhang, J. Dong, T. Ye, J. Hao, Y. Yang, X. Jiang, X. Kang, Y. Bando, X. Wang, J. Mater. Chem. A 2018, 6, 14894–14902.
- 33Y. Xia, T. S. Mathis, M. Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 2018, 557, 409–412.
- 34L. L. Zhang, X. Zhao, H. Ji, M. D. Stoller, L. Lai, S. Murali, S. McDonnell, B. Cleveger, R. M. Wallace, R. S. Ruoff, Energy Environ. Sci. 2012, 5, 9618.
- 35
- 35aH.-F. Fei, W. Li, A. Bhardwaj, S. Nuguri, A. Ribbe, J. J. Watkins, J. Am. Chem. Soc. 2019, 141, 17006–17014;
- 35bJ. Kang, A. Hirata, L. Chen, S. Zhu, T. Fujita, M. Chen, Angew. Chem. Int. Ed. 2015, 54, 8100–8104; Angew. Chem. 2015, 127, 8218–8222.
- 36A. Halder, M. Ghosh, M. A. Khayum, S. Bera, M. Addicoat, H. S. Sasmal, S. Karak, S. Kurungot, R. Banerjee, J. Am. Chem. Soc. 2018, 140, 10941–10945.
- 37S.-Y. Lu, M. Jin, Y. Zhang, Y.-B. Niu, J.-C. Gao, C. M. Li, Adv. Energy Mater. 2018, 8, 1702545.
- 38X. Wang, G. Sun, P. Routh, D. H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067–7098.
- 39Y. M. Chen, Z. Li, X. W. Lou, Angew. Chem. Int. Ed. 2015, 54, 10521–10524; Angew. Chem. 2015, 127, 10667–10670.
- 40L. Zhang, X. Yang, F. Zhang, G. Long, T. Zhang, K. Leng, Y. Zhang, Y. Huang, Y. Ma, M. Zhang, Y. Chen, J. Am. Chem. Soc. 2013, 135, 5921–5929.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.