C1 Oxidation/C2 Reduction Isomerization of Unprotected Aldoses Induced by Light/Ketone
Dr. Yusuke Masuda
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510 Japan
Search for more papers by this authorHiromu Tsuda
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Masahiro Murakami
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510 Japan
Search for more papers by this authorDr. Yusuke Masuda
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510 Japan
Search for more papers by this authorHiromu Tsuda
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Masahiro Murakami
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510 Japan
Search for more papers by this authorAbstract
Unprotected aldoses in water undergo an isomerization reaction via a radical pathway when irradiated with light in the presence of water-soluble benzophenone. Whereas its anomeric carbon (C1) is oxidized to a carboxy group, the hydroxy group on the C2 carbon is replaced by hydrogen. The generated 2-deoxy lactones are readily reduced to the corresponding 2-deoxy aldoses, which are often contained in bioactive compounds.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201914242-sup-0001-misc_information.pdf4.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Macrolide Antibiotics, 2nd ed. ), Academic, Cambridge, 2002;
- 1bS. Pal, Tetrahedron 2006, 62, 3171–3200.
- 2
- 2aP. J. Hauptman, R. A. Kelly, Circulation 1999, 99, 1265–1270;
- 2bG. G. Belz, K. Breithaupt-Grögler, U. Osowski, Eur. J. Clin. Invest. 2001, 31, 10–17.
- 3Reviews on synthesis of 2-deoxyglycosides:
- 3aC. H. Marzabadi, R. W. Franckm, Tetrahedron 2000, 56, 8385–8417;
- 3bD. Hou, T. L. Lowarym, Carbohydr. Res. 2009, 344, 1911–1940;
- 3cC. S. Bennett, M. C. Galan, Chem. Rev. 2018, 118, 7931–7985.
- 4Selected examples of C2 reduction of sugar derivatives:
- 4aH. H. Baer, H. R. Hanna, Carbohydr. Res. 1982, 110, 19–41;
- 4bM. E. Haque, T. Kikuchi, K. Kanemitsu, Y. Tsuda, Chem. Pharm. Bull. 1987, 35, 1016–1029;
- 4cD. P. Sebesta, W. R. Roush, J. Org. Chem. 1992, 57, 4799–4802;
- 4dD. Horton, W. Priebe, M. L. Sznaidman, J. Org. Chem. 1993, 58, 1821–1826;
- 4eR. W. Franck, C. H. Marzabadi, J. Org. Chem. 1998, 63, 2197–2208;
- 4fV. Costantino, E. Fattorusso, C. Imperatore, A. Mangoni, Tetrahedron Lett. 2002, 43, 9047–9050;
- 4gM. P. Mclaughlin, L. L. Adduci, J. J. Becker, M. R. Gagné, J. Am. Chem. Soc. 2013, 135, 1225–1227, and references therein.
- 5Photoinduced C2 reduction reactions:
- 5aA. Bordoni, R. M. de Lederkremer, C. Marino, Carbohydr. Res. 2006, 341, 1788–1795;
- 5bH. Wang, J. Tao, X. Cai, W. Chen, Y. Zhao, Y. Xu, W. Yao, J. Zeng, Q. Wan, Chem. Eur. J. 2014, 20, 17319–17323;
- 5cJ.-T. Ge, Y.-Y. Li, J. Tian, R.-Z. Liao, H. Dong, J. Org. Chem. 2017, 82, 7008–7014.
- 6Direct deoxygenation of aldonolactones: S. Hanessian, C. Girard, Synlett 1994, 861–862.
- 7Recent examples of photoredox-catalyzed conversion of sugar derivatives:
- 7aY. Yu, D.-C. Xiong, R.-Z. Mao, X.-S. Ye, J. Org. Chem. 2016, 81, 7134–7138;
- 7bI. C. Wan, M. D. Witte, A. J. Minnaard, Chem. Commun. 2017, 53, 4926–4929;
- 7cS. O. Badir, A. Dumoulin, J. K. Matsui, G. A. Molandar, Angew. Chem. Int. Ed. 2018, 57, 6610–6613; Angew. Chem. 2018, 130, 6720–6723;
- 7dH. Ye, C. Xiao, Q.-Q. Zhou, P. G. Wang, W.-J. Xiao, J. Org. Chem. 2018, 83, 13325–13334;
- 7eE. Ota, H. Wang, N. L. Frye, R. R. Knowles, J. Am. Chem. Soc. 2019, 141, 1457–1462;
- 7fV. Dimakos, H. Y. Su, G. E. Garrett, M. S. Taylor, J. Am. Chem. Soc. 2019, 141, 5149–5153.
- 8Reactions using aryl ketones as the photocatalyst:
- 8aE. S. de Alvarenga, J. Mann, J. Chem. Soc. Perkin Trans. 1 1993, 2141–2142;
- 8bS. Bertrand, N. Hoffmann, S. Humbel, J. P. Pete, J. Org. Chem. 2000, 65, 8690–8703;
- 8cT. Hoshikawa, M. Inoue, Chem. Sci. 2013, 4, 3118–3123;
- 8dJ.-B. Xia, C. Zhu, C. Chen, J. Am. Chem. Soc. 2013, 135, 17494–17500;
- 8eJ. J. Murphy, D. Bastida, S. Paria, M. Fagnoni, P. Melchiorre, Nature 2016, 532, 218–222;
- 8fA. Tröster, R. Alonso, A. Bauer, T. Bach, J. Am. Chem. Soc. 2016, 138, 7808–7811;
- 8gS. Kamijo, G. Takao, K. Kamijo, M. Hirota, K. Tao, T. Murafuji, Angew. Chem. Int. Ed. 2016, 55, 9695–9699; Angew. Chem. 2016, 128, 9847–9851;
- 8hY. Shen, Y. Gu, R. Martin, J. Am. Chem. Soc. 2018, 140, 12200–12209, and references therein.
- 9
- 9aN. Ishida, Y. Masuda, S. Uemoto, M. Murakami, Chem. Eur. J. 2016, 22, 6524–6527;
- 9bY. Masuda, N. Ishida, M. Murakami, Eur. J. Org. Chem. 2016, 5822–5825.
- 10
- 10aD. Dondi, I. Caprioli, M. Fagnoni, M. Mella, A. A. Albini, Tetrahedron 2003, 59, 947–957;
- 10bD. Dondi, S. Protti, A. Albini, S. Mañas Carpio, M. Fagnoni, Green Chem. 2009, 11, 1653–1659.
- 11Sodium d-gluconate would arise when 6 in Scheme 3 is further oxidized by another BPSS: J. N. Pitts, Jr., R. L. Letsinger, R. P. Taylor, J. M. Patterson, G. Recktenwald, R. B. Martin, J. Am. Chem. Soc. 1959, 81, 1068–1077.
- 12See SI for details.
- 13A six-membered-ring lactone was scarcely formed from 2 a through acid-promoted lactonization.
- 14For pKa values of sugars, see:
- 14aF. Urban, P. A. Shaffer, J. Biol. Chem. 1932, 94, 697–715;
- 14bS. Feng, C. Bagia, G. Mpourmpakis, J. Phys. Chem. A 2013, 117, 5211–5219.
- 15
- 15aP. J. Wagner, A. E. Kemppainen, J. Am. Chem. Soc. 1969, 91, 3085–3087;
- 15bI. E. Kochevar, P. J. Wagner, J. Am. Chem. Soc. 1972, 94, 3859–3865.
- 16B. C. Gilbert, J. P. Larkin, R. O. C. Norman, J. Chem. Soc. Perkin Trans. 2 1972, 794–802.
- 17
- 17aR. H. Abeles, D. Dolphin, Acc. Chem. Res. 1976, 9, 114–120;
- 17bP. A. Frey, Chem. Rev. 1990, 90, 1343–1357;
- 17cJ. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705–762;
- 17dT. Toraya, Chem. Rev. 2003, 103, 2095–2127.
- 18Selected examples of spin-center shift in organic synthesis:
- 18aP. Wessig, O. Muehling, Eur. J. Org. Chem. 2007, 2219–2232;
- 18bJ. Jin, D. W. C. MacMillan, Science 2015, 525, 87–90;
- 18cE. D. Nacsa, D. W. C. MacMillan, J. Am. Chem. Soc. 2018, 140, 3322–3330;
- 18dS. Barata-Vallejo, C. Ferreri, B. T. Golding, C. Chatgilialoglu, Org. Lett. 2018, 20, 4290–4294, and references therein.
- 19
- 19aJ. A. Cradlebaugh, L. Zhang, G. R. Shelton, G. Litwinienko, B. E. Smart, K. U. Ingold, W. R. Dolbier, Jr., Org. Biomol. Chem. 2004, 2, 2083–2086;
- 19bJ. L. Jeffrey, J. A. Terrett, D. W. C. MacMillan, Science 2015, 349, 1532–1536.
- 20I. Fokt, S. Skora, C. Conrad, T. Madden, M. Emmett, W. Priebe, Carbohydr. Res. 2013, 368, 111–119.
- 21A. N. Wick, D. R. Drury, H. I. Nakada, J. B. Wolfe, J. Biol. Chem. 1957, 224, 963–969.
- 22
- 22aL. Sokoloff, J. Neurochem. 1977, 29, 13–26;
- 22bL. Sokoloff, M. Reivich, C. Kennedy, M. H. Desrosiers, C. S. Patlak, K. D. Pettigrew, G. Sakurada, M. Shinohara, J. Neurochem. 1977, 28, 897–916.
- 23S. S. Gambhir, Nat. Rev. Cancer 2002, 2, 683–693.
- 24W. Xu, H. Yang, Y. Liu, Y. Hua, B. He, X. Ning, Z. Qin, H.-M. Liu, F.-W. Liu, Synthesis 2017, 49, 3686–3691.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.