On-surface Synthesis of a Semiconducting 2D Metal–Organic Framework Cu3(C6O6) Exhibiting Dispersive Electronic Bands
Dr. Ran Zhang
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorDr. Jing Liu
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorYifan Gao
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorMuqing Hua
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorBowen Xia
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorPeter Knecht
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorDr. Anthoula C. Papageorgiou
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorDr. Joachim Reichert
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorProf. Dr. Johannes V. Barth
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorProf. Dr. Hu Xu
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li Huang
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Nian Lin
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorDr. Ran Zhang
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorDr. Jing Liu
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorYifan Gao
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorMuqing Hua
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorBowen Xia
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorPeter Knecht
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorDr. Anthoula C. Papageorgiou
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorDr. Joachim Reichert
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorProf. Dr. Johannes V. Barth
Physics Department E20, Technical University of Munich, 85748 Garching, Germany
Search for more papers by this authorProf. Dr. Hu Xu
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li Huang
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Nian Lin
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
Search for more papers by this authorAbstract
A 2D metal–organic framework (2D-MOF) was formed on a Cu(111) substrate using benzenehexol molecules. By means of a combination of scanning tunneling microscopy and spectroscopy, X-ray photoelectron spectroscopy and density-functional theory, the structure of the 2D-MOF is determined to be Cu3(C6O6), which is stabilized by O–Cu–O bonding motifs. We find that upon adsorption on Cu(111), the 2D-MOF features a semiconductor band structure with a direct band gap of 1.5 eV. The O–Cu–O bonds offer efficient charge delocalization, which gives rise to a highly dispersive conduction band with an effective mass of 0.45 me at the band bottom, implying a high electron mobility in this material.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913698-sup-0001-misc_information.pdf2.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714;
- 1bS. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430.
- 2
- 2aR. Sakamoto, K. Takada, T. Pal, H. Maeda, T. Kambe, H. Nishihara, Chem. Commun. 2017, 53, 5781–5801;
- 2bM. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 6267–6295;
- 2cH. Maeda, R. Sakamoto, H. Nishihara, Langmuir 2016, 32, 2527–2538.
- 3
- 3aM. Ko, L. Mendecki, K. A. Mirica, Chem. Commun. 2018, 54, 7873–7891;
- 3bC. H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 2012, 14, 13120–13132;
- 3cL. Sun, M. G. Campbell, M. Dincă, Angew. Chem. Int. Ed. 2016, 55, 3566–3579; Angew. Chem. 2016, 128, 3628–3642;
- 3dJ.-H. Dou, L. Sun, Y. Ge, W. Li, C. H. Hendon, J. Li, S. Gul, J. Yano, E. A. Stach, M. Dincă, J. Am. Chem. Soc. 2017, 139, 13608–13611;
- 3eT. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 2013, 135, 2462–2465;
- 3fA. J. Clough, J. M. Skelton, C. A. Downes, A. A. de la Rosa, J. W. Yoo, A. Walsh, B. C. Melot, S. C. Marinescu, J. Am. Chem. Soc. 2017, 139, 10863–10867;
- 3gL. E. Darago, M. L. Aubrey, C. J. Yu, M. I. Gonzalez, J. R. Long, J. Am. Chem. Soc. 2015, 137, 15703–15711;
- 3hN. Lahiri, N. Lotfizadeh, R. Tsuchikawa, V. V. Deshpande, J. Louie, J. Am. Chem. Soc. 2017, 139, 19–22;
- 3iD. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859–8862;
- 3jH. Nagatomi, N. Yanai, T. Yamada, K. Shiraishi, N. Kimizuka, Chem. Eur. J. 2018, 24, 1806–1810;
- 3kR. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, P. St. Petkov, A. Erbe, S. C. B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, E. Cánovas, Nat. Mater. 2018, 17, 1027–1032.
- 4G. Wu, J. Huang, Y. Zang, J. He, G. Xu, J. Am. Chem. Soc. 2017, 139, 1360–1363.
- 5
- 5aD. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 2018, 3, 30–36;
- 5bD. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Nat. Mater. 2016, 16, 220–224.
- 6M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dincă, Angew. Chem. Int. Ed. 2015, 54, 4349–4352; Angew. Chem. 2015, 127, 4423–4426.
- 7
- 7aR. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem. Int. Ed. 2015, 54, 12058–12063; Angew. Chem. 2015, 127, 12226–12231;
- 7bH. Jia, Y. Yao, J. Zhao, Y. Gao, Z. Luo, P. Du, J. Mater. Chem. A 2018, 6, 1188–1195;
- 7cE. M. Miner, T. Fukushima, D. Sheberla, L. Sun, Y. Surendranath, M. Dincă, Nat. Commun. 2016, 7, 10942;
- 7dJ. A. DeGayner, I.-R. Jeon, L. Sun, M. Dincă, T. D. Harris, J. Am. Chem. Soc. 2017, 139, 4175–4184;
- 7eY. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120–4122;
- 7fY. Tian, Y. Wang, L. Yan, J. Zhao, Z. Su, Appl. Surf. Sci. 2019, 467–468, 98–103.
- 8X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C.-a. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, Nat. Commun. 2015, 6, 7408.
- 9
- 9aX. Zhang, Y. Zhou, B. Cui, M. Zhao, F. Liu, Nano Lett. 2017, 17, 6166–6170;
- 9bX. Huang, S. Zhang, L. Liu, L. Yu, G. Chen, W. Xu, D. Zhu, Angew. Chem. Int. Ed. 2018, 57, 146–150; Angew. Chem. 2018, 130, 152–156.
- 10R. Dong, T. Zhang, X. Feng, Chem. Rev. 2018, 118, 6189–6235.
- 11J. Park, A. C. Hinckley, Z. Huang, D. Feng, A. A. Yakovenko, M. Lee, S. Chen, X. Zou, Z. Bao, J. Am. Chem. Soc. 2018, 140, 14533–14537.
- 12
- 12aF. Bebensee, K. Svane, C. Bombis, F. Masini, S. Klyatskaya, F. Besenbacher, M. Ruben, B. Hammer, T. Linderoth, Chem. Commun. 2013, 49, 9308–9310;
- 12bM. Lo Cicero, A. Della Pia, M. Riello, L. Colazzo, F. Sedona, M. G. Betti, M. Sambi, A. De Vita, C. Mariani, J. Chem. Phys. 2017, 147, 214706;
- 12cS. C. Oh, J. A. Lloyd, S. Fischer, Ö. Saǧlam, A. C. Papageorgiou, K. Diller, D. A. Duncan, F. Klappenberger, F. Allegretti, J. Reichert, J. V. Barth, Chem. Commun. 2018, 54, 12495–12498.
- 13G. Heimel, S. Duhm, I. Salzmann, A. Gerlach, A. Strozecka, J. Niederhausen, C. Bürker, T. Hosokai, I. Fernandez-Torrente, G. Schulze, S. Winkler, A. Wilke, R. Schlesinger, J. Frisch, B. Bröker, A. Vollmer, B. Detlefs, J. Pflaum, S. Kera, K. J. Franke, N. Ueno, J. I. Pascual, F. Schreiber, N. Koch, Nat. Chem. 2013, 5, 187–194.
- 14M. Abel, V. Oison, M. Koudia, L. Porte, Phys. Rev. B 2008, 77, 085410.
- 15N. Lin, A. Dmitriev, J. Weckesser, J. V. Barth, K. Kern, Angew. Chem. Int. Ed. 2002, 41, 4779–4783; Angew. Chem. 2002, 114, 4973–4977.
- 16
- 16aW. Moritz, B. Wang, M. L. Bocquet, T. Brugger, T. Greber, J. Wintterlin, S. Günther, Phys. Rev. Lett. 2010, 104, 136102;
- 16bL. Gao, J. R. Guest, N. P. Guisinger, Nano Lett. 2010, 10, 3512–3516;
- 16cJ. H. Kim, K. Kim, Z. Lee, Sci. Rep. 2015, 5, 12508;
- 16dP. Wing-Tat, D. Colm, J. Phys. D 2005, 38, R 329.
- 17
- 17aA. Della Pia, M. Riello, J. Lawrence, D. Stassen, T. S. Jones, D. Bonifazi, A. De Vita, G. Costantini, Chem. Eur. J. 2016, 22, 8105–8112;
- 17bA. C. Papageorgiou, J. Li, S. C. Oh, B. Zhang, Ö. Sağlam, Y. Guo, J. Reichert, A. B. Marco, D. Cortizo-Lacalle, A. Mateo-Alonso, J. V. Barth, Nanoscale 2018, 10, 9561–9568.
- 18H. Vázquez, Y. J. Dappe, J. Ortega, F. Flores, J. Chem. Phys. 2007, 126, 144703.
- 19
- 19aS. Wang, W. Wang, L. Z. Tan, X. G. Li, Z. Shi, G. Kuang, P. N. Liu, S. G. Louie, N. Lin, Phys. Rev. B 2013, 88, 245430;
- 19bS. Wang, L. Z. Tan, W. Wang, S. G. Louie, N. Lin, Phys. Rev. Lett. 2014, 113, 196803.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.