Expanding the Toolbox of Metal–Phenolic Networks via Enzyme-Mediated Assembly
Qi-Zhi Zhong
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Joseph J. Richardson
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorShiyao Li
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Wenjie Zhang
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Yi Ju
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Jianhua Li
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Shuaijun Pan
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorJingqu Chen
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Frank Caruso
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorQi-Zhi Zhong
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Joseph J. Richardson
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorShiyao Li
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Wenjie Zhang
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Yi Ju
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Jianhua Li
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorDr. Shuaijun Pan
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorJingqu Chen
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Frank Caruso
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010 Australia
Search for more papers by this authorAbstract
Functional coatings are of considerable interest because of their fundamental implications for interfacial assembly and promise for numerous applications. Universally adherent materials have recently emerged as versatile functional coatings; however, such coatings are generally limited to catechol, (ortho-diphenol)-containing molecules, as building blocks. Here, we report a facile, biofriendly enzyme-mediated strategy for assembling a wide range of molecules (e.g., 14 representative molecules in this study) that do not natively have catechol moieties, including small molecules, peptides, and proteins, on various surfaces, while preserving the molecule's inherent function, such as catalysis (≈80 % retention of enzymatic activity for trypsin). Assembly is achieved by in situ conversion of monophenols into catechols via tyrosinase, where films form on surfaces via covalent and coordination cross-linking. The resulting coatings are robust, functional (e.g., in protective coatings, biological imaging, and enzymatic catalysis), and versatile for diverse secondary surface-confined reactions (e.g., biomineralization, metal ion chelation, and N-hydroxysuccinimide conjugation).
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913509-sup-0001-misc_information.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Decher, Science 1997, 277, 1232–1237;
- 1bF. Caruso, R. A. Caruso, H. Möhwald, Science 1998, 282, 1111–1114;
- 1cD. Y. Ryu, K. Shin, E. Drockenmuller, C. J. Hawker, T. P. Russell, Science 2005, 308, 236–239;
- 1dJ. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103–1169;
- 1eJ. J. Richardson, M. Björnmalm, F. Caruso, Science 2015, 348, aaa 2491;
- 1fS. Ma, C. Yan, M. Cai, J. Yang, X. Wang, F. Zhou, W. Liu, Adv. Mater. 2018, 30, 1803371;
- 1gR. Liu, J. Zhao, Q. Han, X. Hu, D. Wang, X. Zhang, P. Yang, Adv. Mater. 2018, 30, 1802851;
- 1hJ. Kobayashi, T. Okano, Bull. Chem. Soc. Jpn. 2019, 92, 817–824;
- 1iK. Ariga, E. Ahn, M. Park, B.-S. Kim, Chem. Asian J. 2019, 14, 2553–2566.
- 2
- 2aK. Lan, Y. Xia, R. Wang, Z. Zhao, W. Zhang, X. Zhang, A. Elzatahry, D. Zhao, Matter 2019, 1, 527–538;
- 2bB. Su, Y. Tian, L. Jiang, J. Am. Chem. Soc. 2016, 138, 1727–1748;
- 2cS. Gao, J. Hou, Z. Deng, T. Wang, S. Beyer, A. G. Buzanich, J. J. Richardson, A. Rawal, R. Seidel, M. Y. Zulkifli, W. Li, T. D. Bennett, A. K. Cheetham, K. Liang, V. Chen, Chem 2019, 5, 1597–1608.
- 3M. Abbas, Q. Zou, S. Li, X. Yan, Adv. Mater. 2017, 29, 1605021.
- 4X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H. C. Zhou, Chem. Soc. Rev. 2017, 46, 3386–3401.
- 5M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 2016, 15, 141–153.
- 6R. Qin, Y. Liu, F. Tao, C. Li, W. Cao, P. Yang, Adv. Mater. 2019, 31, 1803377.
- 7
- 7aH. A. Lee, Y. Ma, F. Zhou, S. Hong, H. Lee, Acc. Chem. Res. 2019, 52, 704–713;
- 7bM. A. Rahim, S. L. Kristufek, S. Pan, J. J. Richardson, F. Caruso, Angew. Chem. Int. Ed. 2019, 58, 1904–1927; Angew. Chem. 2019, 131, 1920–1945.
- 8
- 8aQ. Z. Zhong, S. Li, J. Chen, K. Xie, S. Pan, J. J. Richardson, F. Caruso, Angew. Chem. Int. Ed. 2019, 58, 12563–12568; Angew. Chem. 2019, 131, 12693–12698;
- 8bZ. Wang, H. C. Yang, F. He, S. Peng, Y. Li, L. Shao, S. B. Darling, Matter 2019, 1, 115–155.
- 9K. Liang, J. E. Chung, S. J. Gao, N. Yongvongsoontorn, M. Kurisawa, Adv. Mater. 2018, 30, 1706963.
- 10Y. Wang, J. P. Park, S. H. Hong, H. Lee, Adv. Mater. 2016, 28, 9961–9968.
- 11H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426–430.
- 12H. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. van Koeverden, G. K. Such, J. Cui, F. Caruso, Science 2013, 341, 154–157.
- 13Q. Ye, F. Zhou, W. Liu, Chem. Soc. Rev. 2011, 40, 4244–4258.
- 14
- 14aH. Lee, B. P. Lee, P. B. Messersmith, Nature 2007, 448, 338–341;
- 14bC. R. Matos-Pérez, J. D. White, J. J. Wilker, J. Am. Chem. Soc. 2012, 134, 9498–9505;
- 14cJ. Yu, Y. Kan, M. Rapp, E. Danner, W. Wei, S. Das, D. R. Miller, Y. Chen, J. H. Waite, J. N. Israelachvili, Proc. Natl. Acad. Sci. USA 2013, 110, 15680–15685;
- 14dG. P. Maier, M. V. Rapp, J. H. Waite, J. N. Israelachvili, A. Butler, Science 2015, 349, 628–632;
- 14eJ. Guo, B. L. Tardy, A. J. Christofferson, Y. Dai, J. J. Richardson, W. Zhu, M. Hu, Y. Ju, J. Cui, R. R. Dagastine, I. Yarovsky, F. Caruso, Nat. Nanotechnol. 2016, 11, 1105–1111.
- 15
- 15aT. S. Sileika, D. G. Barrett, R. Zhang, K. H. A. Lau, P. B. Messersmith, Angew. Chem. Int. Ed. 2013, 52, 10766–10770; Angew. Chem. 2013, 125, 10966–10970;
- 15bD. G. Barrett, T. S. Sileika, P. B. Messersmith, Chem. Commun. 2014, 50, 7265–7268;
- 15cM. A. Rahim, K. Kempe, M. Müllner, H. Ejima, Y. Ju, M. P. van Koeverden, T. Suma, J. A. Braunger, M. G. Leeming, B. F. Abrahams, F. Caruso, Chem. Mater. 2015, 27, 5825–5832.
- 16S. Quideau, D. Deffieux, C. Douat-Casassus, L. Pouysegu, Angew. Chem. Int. Ed. 2011, 50, 586–621; Angew. Chem. 2011, 123, 610–646.
- 17A. Korner, J. Pawelek, Science 1982, 217, 1163–1165.
- 18J. Y. Kim, W. I. Kim, W. Youn, J. Seo, B. J. Kim, J. K. Lee, I. S. Choi, Nanoscale 2018, 10, 13351–13355.
- 19H. Lee, W. I. Kim, W. Youn, T. Park, S. Lee, T. S. Kim, J. F. Mano, I. S. Choi, Adv. Mater. 2018, 30, 1805091.
- 20N. R. Perron, H. C. Wang, S. N. DeGuire, M. Jenkins, M. Lawson, J. L. Brumaghim, Dalton Trans. 2010, 39, 9982–9987.
- 21M. J. Sever, J. T. Weisser, J. Monahan, S. Srinivasan, J. J. Wilker, Angew. Chem. Int. Ed. 2004, 43, 448–450; Angew. Chem. 2004, 116, 454–456.
- 22Q. Wu, Z. Xu, Y. Duan, Y. Zhu, M. Ou, X. Xu, RSC Adv. 2017, 7, 28114–28123.
- 23
- 23aF. Ponzio, J. Barthès, J. Bour, M. Michel, P. Bertani, J. Hemmerlé, M. d'Ischia, V. Ball, Chem. Mater. 2016, 28, 4697–4705;
- 23bX. Du, L. Li, J. Li, C. Yang, N. Frenkel, A. Welle, S. Heissler, A. Nefedov, M. Grunze, P. A. Levkin, Adv. Mater. 2014, 26, 8029–8033.
- 24W. Yang, C. Liu, Y. Chen, Langmuir 2018, 34, 3565–3571.
- 25J. R. Ros, J. N. Rodríguez-López, F. García-Cánovas, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1993, 1163, 303–308.
- 26
- 26aC. Maerten, L. Lopez, P. Lupattelli, G. Rydzek, S. Pronkin, P. Schaaf, L. Jierry, F. Boulmedais, Chem. Mater. 2017, 29, 9668–9679;
- 26bS. Kim, A. M. Peterson, N. Holten-Andersen, Chem. Mater. 2018, 30, 3648–3655.
- 27B. Yang, C. Lim, D. S. Hwang, H. J. Cha, Chem. Mater. 2016, 28, 7982–7989.
- 28H. He, S. Averick, P. Mandal, H. Ding, S. Li, J. Gelb, N. Kotwal, A. Merkle, S. Litster, K. Matyjaszewski, Adv. Sci. 2015, 2, 1500069.
- 29
- 29aQ. Z. Zhong, M. H. Yi, Y. Du, A. He, Z. K. Xu, L. S. Wan, Adv. Mater. Interfaces 2017, 4, 1700490;
- 29bS. M. Kang, N. S. Hwang, J. Yeom, S. Y. Park, P. B. Messersmith, I. S. Choi, R. Langer, D. F. Anderson, H. Lee, Adv. Funct. Mater. 2012, 22, 2949–2955;
- 29cQ. Wei, R. Haag, Mater. Horiz. 2015, 2, 567–577.
- 30B. Wang, H. Wu, L. Yu, R. Xu, T. T. Lim, X. W. Lou, Adv. Mater. 2012, 24, 1111–1116.
- 31J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, C. E. Hagemeyer, F. Caruso, Angew. Chem. Int. Ed. 2014, 53, 5546–5551; Angew. Chem. 2014, 126, 5652–5657.
- 32G. Lin, M. A. Rahim, M. G. Leeming, C. Cortez-Jugo, Q. A. Besford, Y. Ju, Q. Z. Zhong, S. T. Johnston, J. Zhou, F. Caruso, ACS Appl. Mater. Interfaces 2019, 11, 17714–17721.
- 33K. Li, J. J. Richardson, B. L. Tardy, H. Ejima, W. Huang, J. Guo, X. Liao, B. Shi, Adv. Sci. 2019, 6, 1801688.
- 34J. Guo, M. Suástegu, K. K. Sakimoto, V. M. Moody, G. Xiao, D. G. Nocera, N. S. Joshi, Science 2018, 362, 813–816.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.